
Model Based Control of Fused Powder 3D Printing

Samuel A. Stodder

Stodder Engineering Services

ABSTRACT

Powder Bed Fusion 3D printing requires precision control of thermal energy deposited onto

polymer powder particles in turn to control polymer phase transition at voxel resolution. With

HP’s proprietary Multi Jet Fusion process (MJF), such control is delivered through printer

parameters that adjust the printer’s thermal system with the application of radiant energy and

print agents. Currently, identifying a set of optimal printer parameters requires users to develop

process expertise. Embedding a MJF process Digital Twin in a model-based control system

holds the promise to significantly simplify and automate the process optimization procedure. A

thermal simulator of the MJF technology has been developed for this purpose. This simulator

runs near real-time, solving a vectorized 3D multi-physics model using explicit finite difference

method accelerated by GPU massive parallelism. It can be used as a “virtual sensor” outputting

voxel level thermal and material phase states that are otherwise infeasible to measure

experimentally.

1. Introduction

This paper describes a simulation of HP’s proprietary Multi-Jet-Fusion printing process,
commonly known as MJF. The process of melting plastic powder layer by layer in an MJF
printer is based on sweeping a fusing lamp wand whose energy is absorbed into a printed fusing
agent (FA) and is mostly reflected off of unprinted powder. The area of the bed where a part is to
be formed is printed with the energy absorbing ink. This ink causes a rapid rise in temperature
until a melt occurs. In addition, a printed detailing agent (DA) is used as an actuator to
evaporatively cool where needed.

Figure 1 3D layering process

Solid Freeform Fabrication 2024: Proceedings of the 35th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

887

A proper powder melt is dependent on three processes to occur; melt coalescence, crystal
structure breakdown, and molecular entanglement (reptation). These processes are all very
dependent on the temperature vs. time path taken. Voxel by Voxel control of Temperature over
time is fundamental to attain consistent geometry and material properties. For example, melt
coalescence must complete before the next layer of powder is spread so that full densification
occurs. A complete densification allows for the correct volume of powder to be melted for the
next part layer. This requires careful control of the melt history during the layer melt process.

If the temperature history of each voxel is controlled, part size and material property
variation can be minimized. A big advantage of the MJF technology over Selective Laser
Sintering (SLS) is that the discriminate use of detailing agent provides an actuator for fine detail
control of the melt process. In this study, model-based control of detailing agent is being
explored as a method to automatically control the thermal history of the process voxel by voxel.

2. Methodology

2.1 Model Based Control. If you could measure voxel temperature in real time, then a

control system could be utilized to control temperature. However, measurement access for
process control is limited both spatially and temporally. Measurement resolution is too low to
pick up fine part detail and is also partially blocked by powder spread, and print/fuse carriage
motions. However, a 3d thermal prediction engine can be used in a model-based control system
to provide the missing state information.

Figure 2 Model Based Control

In figure 2 shown above, the thermal prediction engine acts as a digital twin to the 3d

printer system. The same time dependent forcing functions that are fed into the 3d printer are fed

into the model. The model predicts the next Temperature iteration at a high temporal and spatial

resolution. Limited thermal measurements from the plant are compared to the model prediction

to modify loss coefficients. In this way the model is prevented from drifting away from the MJF

plant due to variable loss behavior across the bed. And finally, the predicted temperature is

888

compared with the reference to enable a correction to the physical actuators (Detailing Agent and

Heat Lamp) for the next layer.

2.2 Thermal Prediction Engine. The thermal prediction engine is a heat diffusion

solver that predicts temperature, & material state of a 3D array of voxels at each time step. The

model is constructed to utilize 25 z axis node layers. The 22 top layer nodes have a thickness in

z equal to one build layer (0.08 mm). At the beginning of a new layer, the temperature and

material state (powder or melt) for each voxel is shifted down by one layer and a fresh layer of

powder is added to the top of the 3D bed array. To prevent the array from increasing in the

number of z axis layer nodes, an accumulator at node layer 23 absorbs the energy of the layer

directly above it and increases its thickness by one layer each time a top layer powder spread is

added. Node layer 24 is 4 mm thick and node layer 25 is 8 mm thick. The z axis can be limited to

25 node layers because the lower layer temperatures have a small effect on the top layers. In this

way, more nodes are not needed to get a good result for top level temperature prediction. The

result is a much simpler faster model.

Figure 3 Z axis node layers

In figure 4b, the image shows the xy top layer bed temperature field. In figure 4d, the

image shows the xz temperature slice of the bed. Figure 4d shows the z axis with a total of 25

nodes. A whole bed array has many nodes in x and y but only 25 in z. Typically the xy nodes are

set at 0.24 mm spacing.

889

Figure 4 graphical output at layer time = 7.5 sec

2.3 Temperature Solver. The solver method used is an explicit finite difference solution

to the heat equation. The current temperature is found by element wise multiplication of the

transition matrix with the previous time step temperature. This is added to the Boundary

condition matrix that is element wise multiplied to the boundary temperatures and finally the

Forcing Function (FF) matrix is added to get the next timestep temperature.

 T= 𝑨 ⊙ 𝑻𝒐 + 𝒉 ⊙ 𝑳 ⊙ 𝑻𝒃 + 𝑭𝑭

A is a whole bed array transition matrix. It can change at every time step.

To is a whole bed Temperature array from the previous time step.

h is the convection matrix

L is the boundary condition matrix

Tb is the whole bed boundary Temperature. It is constant in time.

FF is a whole bed Forcing Function array for the current time step.

890

2.4 Transition Matrix (A) Since the solver method is explicit, and fully vectorized, the

voxel temperature matrix (T) can be solved in parallel with a GPU. Therefore, temperature for

every voxel is solved in parallel for each timestep based on the previous time step temperature

(To). The transition matrix (A) can change for each time step dependent on the material state of

each voxel, its direct neighboring voxels, as well as its location in the bed. For instance, the

configuration of the voxel nodes can be interior, face, edge, or corner. (See Fundamentals of

Heat and Mass Transfer, Frank P. Incropera, 2007, pg. 306) In addition, the z axis height of each

layer voxel represented by the nodal equations is larger if they are located towards the bottom of

the bed as described previously. This solver implementation is described by 36 different forms of

the explicit finite difference equation to account for the different 3D node configurations. In

addition, each configuration nodal equation is modified locally, dependent on its voxel material

state, and the adjacent voxel material states. The configurations are also locally modified for a

tapered densification behavior in the z axis when starting up a melt over powder. Assembling the

transition matrix (A) would involve considerably additional memory, so instead the transition

matrix values are computed and used to calculate each nodal temperature result “along the way”

without storing the whole A matrix.

2.5 Convection Matrix (h) Top layer temperature feedback error is provided by

comparing temperature measurements from an IR camera to the predicted measurement output

from the model. If there is no IR camera feedback then the convection coefficient is constant for

all top surface nodes. If the model is implemented with IR camera temperature feedback, the

convection coefficients are modified with a loss estimator to correct any drift between the

predicted temperature and the measured temperature. This correction would be made on a once

per layer basis. The top surface convection coefficients are spatially smoothed to minimize noise.

In this way smooth continuous zonal convection behavior for the model is maintained. The

resulting convection matrix is input to the L block in figure 2.

2.6 Boundary Condition Matrix (L) The output of the L block in figure 2 multiplied

by the boundary temperatures is a 3d matrix of boundary conditions for the sides, bottom, and

top surfaces. The values of the internal nodes are set to zero since they have no boundaries. The

values for the bottom and side surface nodes are based on the calculated Fourier number for their

particular material states, and geometry. The values for the top surface nodes are set based on

Fourier and Biot numbers computed with the top surface convection matrix coefficients. The

Biot number changes based on the convection coefficient. The L block filters out input that is

close to part and powder boundaries since the IR camera resolution measurements will be unable

to pick up finer temperature detail at the part boundaries. This is done by using appropriate part

layer dilation and erosion methods to create a filter mask. If the part layer consists of only small

part features, then the temperature readings used will be primarily of powder and the part areas

will rely on the model prediction. The final output of the L block will be a 3d matrix of boundary

conditions. This matrix is then multiplied by the boundary temperature matrix Tb in the

difference equation to provide the influence of boundaries on the system. Just as with the A

matrix, assembling the whole 3d L matrix would require considerable additional memory. So

instead, the boundary condition matrix values are computed and used to calculate each nodal

temperature result “along the way” without storing the whole L matrix. In this implementation

the output of the L block is a 2d array of convection coefficients fed to the difference equations

allowing the influence of boundary values to be computed “along the way”.

891

 Figure 5 Model Part Temperature response driven by Forcing Functions

2.7 Forcing Functions (FF) The Forcing Functions are comprised of 6 parts. See figure

5. First there is a powder spread function where the application of a temperature drop to each top

layer voxel for 0.2 seconds occurs to simulate the spread of powder. Second there is constant

heat energy (Heat 1) applied to simulate the effect of overhead heating lamps when the powder

spread carriage and the print/ fuse carriage are not blocking the radiance. The first heat segment

(Heat1) duration is the period of time between when the powder spread carriage has just

completed passing over a voxel and the fuse carriage starts to pass over the voxel. Third, there is

a pulse of energy (Fuse1) applied to simulate the fusing lamp 1 passing over the bed. Fourth,

there is a simulation of the printing of Fusing agent and Detailing agent that occurs just after the

Fuse 1 pulse. Both the fusing agent and detail agent forcing functions are calculated as

evaporative cooling. Fifth, there is a pulse of energy (Fuse2) just after FA/DA print. The Fuse1,

FA/DA print, and Fuse2 functions occur in rapid succession since they are being simulated as

three elements on the same carriage. Last, Heat 2 occurs during the period of time that the fuse-

print-fuse carriage has just passed over a voxel and the spread carriage starts to pass over a

voxel. For a prescribed timestep, the temperature impact of the applied energy sequence is

calculated for each particular voxel position and state. These temperature deltas become the FF

values for each voxel. The result is that the Forcing Function (FF) is comprised of temperature

deltas for each voxel and for each time step of the current layer.

2.7.1 Radiation Extinction The radiant energy of both the heat lamps and fusing lamps

penetrates into powder so the FF function applies not just to the surface voxels but also to

892

underlying voxels. Two radiant extinction models are implemented to distribute the applied

energy of the heating and fusing lamps. If a top layer voxel has been printed with FA, the amount

of energy absorbed vs reflected increases. Likewise, if the voxel is in a melt state its absorbance

increases to a point that blocks lower voxels from radiation. For each top layer voxel, the number

of powder layers covering any melted voxel below is determined up to 19 layers to enable the

radiant extinction models.

2.7.2 Re-Reflection The fusing lamp applied radiation has an additional complication.

The fuse lamp energy flux applied to the top layer voxels varies dependent on the

reflective/absorptive content of the top layer. For instance, an area of white powder will reflect

energy back to the fuse lamp that then re-reflects back to areas that are absorptive such as FA

printed part content. A multi bounce re-reflection model is implemented to account for this

behavior. This model utilizes the current printed part slice layer information by convolving it

with an appropriate convolution kernel to simulate the re-reflection behavior. Additional

corrections are made to account for power bed boundary reflection interaction.

2.7.3 Spatial Voxel timing In this model, a print mode is described as a series of

events that occur on a layer basis. This description is loaded from an excel file as FF values and

timing parameters that describe what occurs to the voxel at the center of the bed. Powder spread,

Heat 1, Fuse1, Print FA/DA, Fuse2, Heat2. See figure 5. The magnitude of these events are set

in the print mode except that Heat1 and DA can change layer to layer since they are used as

actuators to control powder and part temperature response. Although the timing of the center

voxel is set, the timing of all other voxels in the X-Y plane are offset from the center voxel based

on their position relative to the center and machine parameters such as carriage speeds and

carriage direction of travel. In this way the Forcing Function matrix for each time step

incorporates a unique timing for each xy voxel.

2.8 Material State Matrix (TPS) Along with Temperature, the Solver takes the material

state for all voxels as input, and outputs an updated material state for the whole xyz bed. The

material state matrix is represented as a whole bed array of either 0 powder, 1 melt, or .5 partial

melt. See figure 6. If the voxel temperature is less than the melt onset temperature then the state

is powder. If it is greater than the melt end set temperature then it is a melt. If it is in between

then it is a partial melt. The material state matrix (TPS) drives modifiers that change Fourier

numbers in the transition matrix (A) which can result in the transition matrix changing at every

time step. Although the thermal analysis acts on only 25 nodes in the z axis, the material state

matrix TPS can be much deeper such that the whole part layer history is recorded but only the

top 25 voxel material states is used for the solver.

893

Figure 6 Material State slice showing powder, melt, and partial melt

2.9 Melt Level Matrix (meltlevel) The melt level is also an input and output of the

solver. It is an accounting of heat energy (J/kg) put into the voxel after the material arrives at the

melt onset temperature. Further voxel temperature rise is delayed until the cumulative heat

energy input is equal to the heat of fusion (enthalpy) of the material. Once the cumulative heat

energy of the voxel is equal to the enthalpy, the temperature rises with continued energy input. A

better way to represent the melt state would be to use Differential Scanning Calorimeter (DSC)

measurement data for the material when melted close to the process rate to provide a more

accurate temperature response. However, this would require significantly smaller time steps and

slow down the model. I think there is an opportunity to improve the model in this area to enable

a more accurate prediction of less crystalline materials.

2.10 Model Structure The 3d Fuse Simulation model is coded in Python. The main

function blocks are shown in figure 7. There are three groupings of functions. The first grouping

is executed once at the start of the program. The second contains a set of functions that execute

for each 3d print layer, and the third is executed once per time step.

894

Figure 7

2.10.1 In the first grouping in figure 7 shown in yellow, a part file and a print mode file

are loaded when the simulation is started. The part file is read by the Get_Part function. The part

file contains a 3d numpy array of a part that has been sliced from an .stl file at the analysis

resolution. The print mode file is read by the ReadParams function. The print mode file is an

excel spread sheet that contains material properties, machine parameters, and print mode timing

values for the center voxel. From the part file and parameter file, the inputs are prepared for the

solver (Tsolver) and forcing function (GenFF) blocks with the use of four function blocks that

are executed once at the simulation startup. The GenHFL function generates the entire set of

layer Forcing Function radiant energy and timing values for each xy location. The CalcEXT

generates the extinction coefficients for all voxels that are used by the Forcing Function to

distribute radiant energy in the z axis as described in section 2.7.1. GenParams and Boundary-

Temps are functions to finalize preparation of the inputs to the Solver and Forcing Function

blocks.

2.10.2 The function grouping shown in blue executes at the beginning of each new layer.

The Add Layer function shifts the voxel Temperature, material state, & melt level down one

layer and adds a new powder layer to the top of the stack. The RA_Mods function takes as inputs

the top layer fuse lamp radiant energy and the top layer part slice information to redistribute x, y

lamp energy due to re-reflection as described earlier in section 2.7.2. The TL servo function

takes the top layer voxel temperature just before the first Fuse pass to determine a correction to

the heat lamp power (Heat1) needed to maintain powder temperature control to a reference

temperature. The fluid servo function takes the previous end of layer temperature for each top

895

layer voxel and determines the amount of DA evaporative cooling fluid to be printed on the next

layer to control the part region of the top layer to a reference temperature. There are six

reference temperatures for DA fluids control. The first one is the primary control temperature

for the part. Next there are three successive reference temperatures that control the startup of the

first few layers of a part. Next there is a reference temperature that controls the powder at the

edge of a part to control thermal bleed. And last there is a top layer reference temperature to

prevent thermal bleed to successive powder spread layers. All of these temperature references act

on each voxel dependent on its location in the build process.

2.10.3 The function grouping shown in orange contains the GenFF function and the Tsolver

function. Both functions utilize a GPU to parallel process the voxels for each time step. The Gen

FF function is processed first and then its output is input to the Solver function to be processed.

The outputs generated by the Solver are temperature, material, & melt states for each voxel

which are graphically updated or stored for each time step or layer as the user chooses.

2.10.4 The model requires a maximum time step of about .01 seconds for numerical stability

reasons. The primary mode for this model executes the Forcing Function block and the Solver

block every .01 seconds. A second (fast) mode has been created to execute the Forcing function

data at .1 second intervals once per layer. In this mode the Solver is updated with new Forcing

Function data every .1 sec. Inside the solver block, the model runs 10 iterations with Fourier

numbers that are divided by 10. This maintains numerical stability at the cost of some spatial

noise during fast transitions. This spatial noise is due to the parallel processing of 10 timesteps

of all voxels. So, for those ten timesteps, execution is not necessarily sequential but the Fourier

numbers are such that numerical stability is maintained. The spatial noise has minimal effect on

the control temperatures of interest because the rate of temperature change at those points is low.

The advantage of this mode is a 2.5X increase in computation speed while maintaining

temperature control capability

3. Results & Discussion

The model was run using a Nvidia 4070 GPU on a HP Z4 Workstation with an Intel I9 10

core processor and 64 gigabytes of ram. Output of a 4x8 inch model with .25 mm xy resolution

and .08 mm z resolution is computed at a speed of 4.5 secs per layer. Real time for the Nylon

PA-12 print mode being modeled is 7.5 seconds per layer. This model should be scalable to a

larger bed by running it with a larger GPU and more memory resources making it fully capable

of real time control of temperature on a voxel basis.

Model correlation with measured MJF printer IR temperatures is shown in figure 8.

Temperature measurements are taken from the center of a part where edges don’t impact the

measurement. Likewise, powder temperatures are taken from an area away from part edges.

Measured temperatures drop off where the carriages block IR camera vision. The value that the

model brings is that it can predict both the blocked areas as well as part edge areas to provide

feedback data for automatic control of voxel temperature.

896

Figure 8 (Model Validation with MJF IR measurements courtesy of HP)

As a model based controller, the MJF process can be modified with a limited set of lamp

energy, temperature references, and layer time settings. This would allow a customer to quickly

optimize a print mode for a particular job. In addition to model-based control of the MJF process,

the simulator is useful to study the effects of Forcing Function and Temperature control setpoints

before testing in a real machine. As a simulation tool, there are two measures for evaluating the

performance of candidate setpoint parameters. First there is the graphical visualization of the

melt state. Input parameters can be iterated until voxels with partial melts can be minimized. On

the edges of a part layer, this shows up as thermal bleed causing an increase in melt beyond the

part slice boundaries. In Figure 9, a small block with 4 square holes of increasing size

demonstrates the effect of tuning Fluids Servo parameters. The top right image in figure 9 shows

melt growth outside the part slice boundaries that causes holes to be smaller and small holes to

be occluded. It also causes the part width to change from the bottom layer as the part builds.

However, with proper tuning of the parameters, very little thermal bleed occurs as shown in the

lower right image of figure 9.

Figure 9 (Fluids Servo tuning impact on part quality, simulator results)

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8

TE
M

P
ER

A
TU

R
E

(D
EG

 C
)

TIME (SEC)

MODEL VALIDATION
Powder Part Powder (measured) Part (measured)

897

The second performance measure is the degree of Coalescence that is reached during a

layer process. With the ability to predict voxel temperature history, the degree of coalescence

that occurs during the top layer processing can be computed for each voxel and time step. This is

accomplished by using an empirically fit finite difference form of the Frenkel coalescence

equation for PA-12 powder. The results of this process are mapped out for the top layer of the

bed are shown in the lower two images in figure 10 and for a particular voxel in the upper

graphs.

Figure 10 Coalescence graph mode

The upper graphs in Figure 10 show the powder temperature in blue, the part temperature

in red, and the coalescence index in green. As can be seen on the left upper graph the

coalescence process does not fully complete (reach 1) before the next layer of powder is spread.

Lack of coalescence completion before the next layer of powder spread can in theory contribute

to dimensional variation and reduced material properties. Therefore, it is desired to complete

coalescence before the next layer of powder is spread. The model can be used to optimize

coalescence by making modifications that impact Temperature history. The upper right graph in

figure 10 shows improved coalescence prediction by increasing the layer time by 1.5 seconds to

allow for the coalescence to complete. Increasing Temperauture by increasing Fuse Energy could

also help but will result in control inefficiencies. Experimenting with the model shows that

increasing the coalescence time is the easiest way to improve but at the cost of print time.

In the ways discussed above, the model could be used to speed up the development of

print modes for new materials. The material modeled for this study was Nylon PA-12. PA-12 is

a fairly crystalline material for which the melt model used for this study is adequate. However, it

898

may not work so well for less crystalline materials. There is an opportunity to incorporate a more

sophisticated melt model to enable the study of a larger material set.

Initially, it was not clear that the simulator could be written to be parallel enough to scale

with bed size to achieve real time performance. A 2D ConvLSTM based Machine Learning

model was created and trained using the inputs and outputs of the simulator to see if that

approach could be faster. The results showed reasonable accuracy and sufficient speed for real

time control. However, with further work, the physics-based simulator was coded to be

sufficiently parallel and showed similar speed performance but with better accuracy so the

Machine Learning approach was dropped.

4. Conclusion

In summary, model-based voxel temperature control can potentially reduce variance of

material properties and part dimensions. The MJF simulator can be used as a digital twin to

provide automatic control of the MJF process by utilizing recent developments in GPU based

parallel computing. In this way the complexity and number of input parameters needed to control

the process is reduced. In addition, less time and resources are required to develop print modes

for new materials by starting with the MJF simulator.

5. References

Frank P.Incropera …[et al] Fundamentals of Heat & Mass Transfer, 6th ed. John Wiley &

Sons, Inc. , 2007

2D-Sintering Kinetics of Two Model Fluids as Drops. J. Muller, Macromolecules 2008, 41,

2096-2103

899

