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Abstract 

This study explores the application of transfer learning using pre-trained convolutional 

neural networks (CNNs) to investigate the relationship between process parameters and 

microstructure evolution in scientific applications, aiming to predict their correlation with the 

process conditions between laser-sintered samples and fully sintered samples. This method is 

demonstrated using a dataset composed microstructure images taken from samples fabricated via 

micro-Selective Laser Sintering (µ-SLS). The proposed approach utilizes pre-trained CNNs to 

extract informative features from Scanning Electron Microscope (SEM) images and train a fully 

connected neural network to predict the process parameter, i.e. the exposure time of a given sample 

microstructure. The model achieves high accuracy in predicting the process condition directly from 

SEM images, even when dealing with noisy and varied datasets. An accuracy of 94% and 86% 

was achieved when performing binary classification of lightly sintered and heavily sintered 

images. When extended to multiclass classification with 5 unique degrees of sintering, an accuracy 

of 78% was achieved. This approach offers computational efficiency via transfer learning, robust 

noise handling, and the ability to generalize to unseen data. This modeling framework has the 

potential for extension into scientific fields needing microstructure analysis and process-property 

understanding beyond µ-SLS. 
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Introduction 

The increasing demands on computational resources necessitate a reduction in transistor 

sizes to pack more transistors into the same chip area [1], which limits the applicability of existing 

technologies in critical fields such as advanced semiconductor packaging [2]. The Microscale 

Selective Laser Sintering (μ-SLS) system, developed at the University of Texas at Austin [3], 

addresses this challenge by enabling the production of copper and silver structures with single-

micrometer feature resolutions [4]. As microscale additive manufacturing gains importance across 

various sectors, including electronics, biotechnology, medical devices, and optics, driven by the 

growing demand for miniaturization, μ-SLS emerges as a leading technique to meet these 

challenges. This method utilizes laser energy to selectively sinter nanoparticles, making it 

particularly adept at fabricating complex 3D interconnect structures [5]. μ-SLS is positioned as a 

key technology in microelectronics packaging due to its ability to precisely deposit material layers 

[6] and construct final components through selective laser sintering. The μ-SLS process integrates

sophisticated optics and motion systems to achieve exceptional resolution and throughput, with

spot sizes as small as 1 μm and single-micrometer resolution [7][8]. Variations in process

parameters during μ-SLS result in diverse microstructures, each with unique topological features.
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Understanding the correlations between process conditions, microstructures, and resultant 

properties is crucial for producing high-quality thin films in μ-SLS. This study aims to identify 

and elucidate these intricate pattern-forming processes, known as topological transitions, in thin 

films produced by μ-SLS. By analyzing SEM images under varying process conditions, including 

both images with known parameters (such as power and exposure time), we developed a 

classification model to recognize differences between these images and predict process parameters 

for new SEM images, despite the challenges in visual differentiation. 

 

 Recent advances in machine learning and deep learning have substantially improved SEM 

image analysis capabilities. For example, Modarres et al. [9] applied transfer learning to classify 

20,000 SEM images into 10 categories, such as particles, nanowires, and films, using image 

recognition and automatic labeling.  Ziatdinov et al. [10] developed a deep neural network 

workflow to extract atomic positions, defect structures, and track defect transformations from 

unprocessed STEM data, identifying atomic locations and defects within a lattice. Madsen et al. 

[11] developed a deep learning algorithm using a convolutional neural network to identify local 

structures in atomic-resolution TEM images, effectively classifying atomic structures and 

distinguishing chemical types and column heights while remaining robust to varying microscope 

parameters and noise. De Haan et al. [12] used deep learning to enhance low-resolution SEM 

images by inferring unresolved features, which were validated against high-resolution images of 

the same sample. Pellegrino et al. [13] developed a machine learning model to predict the 

morphology of TiO2 nanoparticles based on synthesis parameters like size, polydispersity, and 

aspect ratio. They also reverse-engineered the process to create nanoparticles with ideal 

morphology. Lee et al. [14] used a genetic algorithm to optimize the analysis of TEM images, 

efficiently clustering nanoparticles based on five morphological parameters—major and minor 

axis length, area, solidity, and angular distance—into groups with similar properties. Monchot et 

al. [15] developed a deep learning-based segmentation algorithm using Mask-RCNN and transfer 

learning to define the boundaries of titanium dioxide particles in SEM images, improving 

generalization in agglomerate analysis. Shen et al.[16] developed a Faster R-CNN system for 

analyzing scanning transmission electron microscope images, effectively detecting and analyzing 

defects like dislocation loops in irradiated ferritic steels by identifying various morphologies and 

extracting geometrical information through a two-stage detector with a region proposal network 

and an ROI regressor. Lee et al. [17] developed a dual deep learning network for robust 

autofocusing in SEM. The autofocusing-evaluation network (AENet) evaluated image quality on 

a scale from 0 to 9, using both SEM images and magnification data, while the autofocusing-control 

network (ACNET) controlled the SEM in real time based on AENet's outputs. Dahy et al. [18] 

developed a neural network to classify Pd nanoparticles in SEM images, using an optimization 

model to identify features like lines, intersections, and shapes. 

 

 Building on these impressive advancements, this research is distinguished by the specific 

targeting of the detection and monitoring of sintering in μ-SLS thin films. This novel approach 

allows for the precise identification and control of process conditions, thereby optimizing material 

properties and mitigating defects. Using advanced classification models in conjunction with SEM 

image analysis, a refined tool for enhancing the μ-SLS manufacturing process is provided. This 

advancement results in improved process control and facilitates the production of high-quality, 

nanostructured materials, thus advancing the field of additive manufacturing and supporting the 

development of tailored, defect-free products high quality sintered parts. 
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Experimental Method 

 

The experimental procedure began with the preparation of a glass slide, onto which CI-005 

copper nanoparticle ink from NovaCentrix was applied. (Figure 1-a) The ink was spin-coated at 

750 rpm with an acceleration of 30 m/s² for 30 seconds to ensure a uniform film, then dried on a 

hot plate at 80°C. (Figure 1-b & c) The micro-Selective Laser Sintering (μ-SLS) process was 

performed with an operating current of 55A and a voltage of 20V. (Figure 1-e) 

 

a)   b)  c)   d)  e)  

Figure 1: Experimental procedure a) clear glass slide on a spin coater b) spin-coated copper ink on 

the glass slide c) wet ink on a hot plate for drying d) dried ink e) laser sintered particle  

 

Key parameters in this process include Burst Count and Duty Cycle. Burst Count represents 

the number of laser pulses applied to a specific area and serves as an indicator of exposure time—

e.g., a Burst Count (BC) of 100 corresponds to an exposure duration of 1 second. Higher burst 

counts lead to extended exposure and increased energy input, which facilitates greater necking 

between particles. Figure 2 shows the evolution of sintering through the formation of necking. This 

enhanced necking improves particle bonding, reduces porosity, and increases the material's density 

and mechanical strength. This phenomenon has been explained elaborately in our previous work 

[19]. A higher duty cycle increases laser activity, enhancing energy input, nanoparticle diffusion, 

and necking for improved material densification. As it nears 100%, the process resembles 

continuous wave laser sintering, providing constant heating and further the material. 

 
Figure 2: Evolution of sintering [20] 

 

 

Workflow of the Model 

 

The sintered parts were examined using SEM to capture images. For consistency, images 

were taken at the center of each sample. The microstructure of each part was analyzed to observe 

the visibility of the nanoparticles (Figure 3a).  A data descriptor file is created to document all 

parameters used during image processing (Figure 3b), with a specific focus on Burst Count, given 

that power remains constant. The borders of the SEM images are then cropped to concentrate on 

the microstructure (Figure 3c). The intensity distribution within each image is adjusted using the 

histogram equalization to enhance visibility and highlight key features (Figure 3d). 
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To match the input size required by standard, pre-trained CNN models, large SEM 

images are randomly sampled to produce a set of smaller images. 40 smaller patches are 

sampled from each base SEM image to produce an augmented dataset. Transformations such as 

Random Crop, Random Horizontal Flip, and Random Rotation are applied to introduce 

diversity, allowing the generation of unique patches, with overlapping crops permitted if 

necessary (Figure 3e). The patches are then simplified by undergoing Grayscale 

Conversion, Convert to Tensor, and Normalization processes. These processed patches are 

saved as pickle files to facilitate efficient handling. Additionally, a data descriptor file is created 

for the patched images, which is used for subsequent analysis and processing (Figure 3f). 

Figure 3: Image Preprocessing a) The original SEM image, b) Data Descriptor file with the original 

images, c) SEM image without border, d) Adjusted SEM image after the intensity distribution, e) 

Creating patches from the adjusted images, f) Creating data descriptor file for the patches 

Despite cropping, the patches retain large pixel dimensions. To address this, the patches 

are processed through a pretrained ConvNext network, which effectively captures relevant features 

from the SEM images. A pretrained ConvNext network is well-suited for scenarios with limited 

data. The model is first loaded onto a CPU or GPU to accelerate processing. ConvNext is adapted 

for feature extraction by removing the classification layer, and the model is set to evaluation mode 

to freeze the image processing layers, disabling dropout and ensuring consistent outputs during 

feature extraction. Next, the image patches are loaded from the pickle file and transferred to the 

same device as the model (Figure 4a). ConvNext is then used to extract features from these patches, 

which are compiled into a single tensor for subsequent analysis (Figure 4b). The resulting low-

dimensional representations are input into a classification model trained to predict the process 

parameters. 
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Figure 4: Extracting feature using ConvNext a) Patches from the tensor file, b) Training using 

ConnvNext, c) Compile the extracted features to tensor 

 

 To predict process parameters from SEM images, a neural network with three hidden 

layers, each employing ReLU activation functions, is utilized. Dropout and Weight Decay are 

applied to prevent overfitting, while Batch Normalization is used to stabilize and accelerate 

training. The features extracted from SEM image patches and the associated process parameters 

are provided as input to the network. The dataset is divided into 80% for training, 10% for testing, 

and 10% for validation. The model is trained with a learning rate of 0.001, and seeds are set to 

ensure reproducibility. A batch size of 32 is used, allowing 32 data points to be processed per 

iteration, and the model is trained for 1000 epochs, with validation performed every 10 epochs. A 

graph of training and validation losses over the epochs is plotted to track learning progress and 

guide model adjustments. 

 

 
Figure 5: Neural Network to Solve the Inverse Problem 
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Results and Discussion 

 

 Principal Component Analysis (PCA) was initially tested as a simpler method for 

classifying the data. Although PCA is useful for retaining key information and recognizing 

patterns, clear clusters corresponding to specific process parameters were not observed. Due to the 

limitations of PCA in providing distinct classifications, a more advanced approach using neural 

networks was adopted, resulting in better performance for this task. 

 

 The classification model was applied to a binary classification task to evaluate its 

performance. A total of twelve samples, six each from 100BC as class 0 and 250BC as class 

1(Figure 6a- i & ii), were used, with 10 images captured per sample and 40 patches generated per 

image, yielding a dataset of 4,800 patches. The data was divided into 80% for training and 20% 

for testing, resulting in 480 patches in the test set. The training and validation loss graph shows 

that the training loss decreases sharply and stabilizes near zero, indicating strong model learning 

on the training data (Figure 6b).  

 
Figure 6: For 100BC and 250BC:  a) SEM image i) 100BC and ii) 250BC, b) Training and 

validation loss graph c) ROC curve d) Confusion Matrix  

 

 The Receiver Operating Characteristic (ROC) curve shows that the model exhibits 

excellent classification performance for class 1 (AUC = 0.99) (Figure 6c).  This indicates that the 

model effectively identifies class 1. The confusion matrix reveals that the model correctly 

predicted 235 true negatives (class 0) and 217 true positives (class 1), with 8 false positives and 

20 false negatives, reflecting relatively balanced performance with a few misclassifications in both 

classes (Figure 6d). The F1-Score for the classification model was 0.94, indicating strong overall 

performance in terms of precision and recall, largely due to the distinct microstructural differences 

between the 100BC and 250BC Burst Counts. 
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 A separate model was assessed for its ability to differentiate between samples with closer 

Burst Counts, specifically using six samples each of 150BC and 200BC (Figure 6a- i & ii). The 

dataset, including SEM images and patches, was consistent with previous experiments. The 

training and validation loss graphs, plotted over 1000 epochs, show that while the training loss 

decreases significantly, the validation loss fluctuates and remains relatively high, suggesting 

possible overfitting. (Figure 7b).  

 
Figure 7: For 150BC and 200BC a) SEM image i) 150BC and ii) 200BC, b) Training and validation 

loss graph, c) Confusion Matrix 

 

 The ROC curve for this multi-class classification problem indicates a high AUC of 0.93 

for class 1, signaling good performance. (Figure 7c). The confusion matrix reveals that the model 

accurately predicted 215 true negatives (class 0) and 199 true positives (class 1), with 28 false 

positives and 38 false negatives (Figure 7d). The model's F1-Score was 0.86. While this accuracy 

is slightly lower compared to previous tests, it still demonstrates commendable performance given 

the challenge of distinguishing between microstructures with closely related Burst Counts. This 

highlights the model’s robustness in handling nuanced variations in microstructural transitions. 

 

 

 The model demonstrated strong performance in binary classification tasks. To further 

evaluate its capabilities, we conducted a multiclass classification assessment using six sample sets 

with Burst Counts ranging from 50BC to 250BC (Figure 8a i-v). The samples were sintered across 

three different slides, each containing two sets. A total of 300 images were analyzed, which were 

segmented into 120,000 patches for detailed examination. This multiclass evaluation aimed to test 

the model’s robustness in distinguishing between various microstructural variations. Class 0 
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corresponds to 50BC, Class 1 to 100BC, Class 2 to 150BC, Class 3 to 200BC, and Class 4 to 

250BC. Analysis of the training and validation loss over 1000 epochs revealed steady decreases in 

training loss, indicating effective learning (Figure 8b). However, the validation loss plateaued after 

a certain point, suggesting potential overfitting. 

 

 
Figure 8: a) SEM images: i.50BC, ii. 100BC, iii. 150BC, iv. 200BC, v. 250BC, b) Training and 

validation loss graph, c) Multi-Class Receiver Operating Characteristic, d) Confusion Matrix 
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ROC curve analysis demonstrated strong performance across different classes, with AUC 

values ranging from 0.93 to 0.99 (Figure 8c). These high AUC values indicate the model's 

effectiveness in differentiating between classes, with ROC curves positioned well above the 

diagonal line representing random guessing. Class 4 (250BC) showed the best performance, while 

Class 1 (100BC) exhibited slightly lower performance compared to the other classes. The ROC 

curves provide a comprehensive view of the model’s classification quality, where higher AUC 

values correspond to better performance. 

 

The confusion matrix offers additional insights into the model's classification accuracy 

(Figure 8d). Class 0 (50BC) achieved a strong true positive rate with 176 correct classifications, 

although some misclassifications occurred into Class 1 (100BC), Class 2 (150BC), and Class 3 

(200BC). Class 1 (100BC) had 173 correct classifications but showed notable misclassifications 

into Class 0 (50BC), Class 2 (150BC), Class 3 (200BC), and Class 4 (250BC). Class 2 (150BC) 

and Class 3 (200BC) also exhibited high true positive rates, though some instances were 

misclassified into other classes. Class 4 (250BC) had the highest true positive rate with 210 correct 

classifications and minimal misclassifications. While the model performed well overall, 

distinguishing between classes with similar Burst Counts remains a challenge. 

 

 

 

Challenges and Future Work 

 

Future work could involve expanding the network to include a wider range of process 

conditions, such as varying power levels, using SEM images. Integrating a regression model could 

enhance prediction precision by offering more nuanced output estimates. Key challenges to 

address include ensuring accurate data collection with minimal gaps in burst counts and integrating 

SEM images with supplementary data types, such as resistivity measurements, to further refine 

model accuracy. The ultimate goal is to predict the optimal parameters needed to achieve a desired 

microstructure, with a particular focus on conductivity. 

 

 

 

Conclusion 

 

In conclusion, this study demonstrates the effectiveness of leveraging SEM images and 

advanced machine learning techniques for classifying and predicting process parameters in micro-

Selective Laser Sintering (μ-SLS). The model exhibited high accuracy, excelling particularly in 

binary classifications and showing promising performance in multiclass scenarios. The integration 

of dimensionality reduction and feature extraction using ConvNext, alongside a well-constructed 

neural network, provides a robust framework for analyzing and predicting process conditions 

based on microstructural features. Future work will focus on expanding the model’s scope to 

encompass a broader range of process conditions, incorporating additional data types for improved 

accuracy, and refining data collection methodologies to better handle burst count variations. 

Ultimately, this research aims to achieve precise control over process parameters, thereby 

optimizing microstructural properties and advancing the fields of materials science and additive 

manufacturing. 
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