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Abstract 

Laser powder bed fusion (L-PBF) uses a controlled laser beam to melt specific regions of a metal powder 

bed in a layer-by-layer fashion to fabricate parts with an intricate geometry. However, due to the stochastic nature 

of the L-PBF process, many defects may occur during the build process, including distortion, porosity, and high 

surface roughness. A poor roughness of the upper surface is frequently associated with impaired mechanical 

properties and a lower corrosion resistance. Thus, laser polishing (LP) is commonly employed to smooth the 

surface of the component following the build process.  The present study proposes an integrated framework based 

on discrete element method (DEM) and computational fluid dynamics (CFD) simulations which takes account of 

all of these factors to predict the final surface morphology and roughness of L-PBF components following LP 

processing. The validity of the simulation model is confirmed by comparing the calculated mean surface 

roughness of the polished components (𝑆𝑎) with the experimental values. It is found that the maximum error of 

the simulation results for different initial surface morphologies and LP processing conditions is less than 6.8%. 
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1.Introduction

Laser Powder Bed Fusion (L-PBF) utilizes laser radiations to selectively fuse a metal powder layer bed 

layer-by-layer in such a way as to gradually build up a 3D component with a specified size and geometry. A high 

top surface roughness is one of the most common defects in AM. One of the main reasons for this high surface 

roughness is the “layering” effect which occurs during the build process, in which the surface roughness of the 

current layer is superimposed on top of that of the previous layer such that the surface roughness gradually 

accumulates as the build process proceeds [1]. The surface roughness of the top layer is further degraded by the 

build-up of powder particles on the surface, incomplete melting of the powder particles , spatter formation, and 

variations in the laser power, scanning speed, and other printing factors [2-4]. Experimental studies have shown 

that the surface roughness of L-PBF parts adversely affects their mechanical properties [5] and fatigue life [6]. 

The present study proposes a novel simulation model including an algorithm to simulate surface 

morphology and a CFD simulation model to predict the surface roughness of LP-processed L-PBF parts as a 

function of the as-received L-PBF surface roughness and the LP processing conditions. In the proposed method, 

the surface profile of the as-received L-PBF part is calculated experimentally, and the characteristic values of the 

surface roughness are determined mathematically. The surface roughness parameters are processed by a surface 

generation model and discrete element method (DEM) simulations to reconstruct the surface morphology of the 

as-built sample.  CFD simulations are then performed to model the impacts of the surface tension force, recoil 

pressure, and Marangoni convection on the surface morphology of the LP-processed part. 
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2.Methodology 

  

 Figure 1 presents a flowchart of the proposed integrated simulation methodology. The process commences 

by measuring the surface morphology of the as-built sample and extracting the characteristic parameters of 

interest, namely 𝑆𝑎, 𝑆𝑞 , 𝐶𝑙𝑥 and 𝐶𝑙𝑦, where 𝑆𝑎  is the arithmetic mean deviation of the surface from a defined 

centerline; 𝑆𝑞  is the root-mean-square deviation of the surface from the centerline; and 𝐶𝑙𝑥 and 𝐶𝑙𝑦 are the 

variations of the surface height in the lateral and vertical directions, respectively [7]. Based on the extracted 

surface parameters, a mathematical model consisting of a surface generation model and DEM simulations is 

applied to simulate the surface morphology of the as-built L-PBF part. The simulated surface is then imported 

into a CFD simulation model to predict the surface morphology of the as-built part following laser polishing with 

specific processing parameters. The findings from the simulation are validated by comparing the computed value 

of 𝑆𝑎 for the polished surface profile with that obtained from experimental measurements.  

 

 

 
 

Figure 1 Workflow of proposed simulation framework 

Figures 2(a) and (b) show the initial and polished surface roughness profiles of two samples with initial 

𝑆𝑎 values of 12 µm and 17 µm, respectively. (Note that the LP processing parameters are 239 W and 976 mm/s 

in both cases.). The LP process reduces the surface roughness of the two samples to 8.5 µm and 12.8 µm, 

respectively.  

For the sample with an initial 𝑆𝑎value of 12 µm, the surface roughness improved by approximately 29% 

to 8.5 µm after the LP process. Similarly, for the sample with an initial 𝑆𝑎 value of 17 µm, the surface roughness 

improved by about 25% to 12.8 µm after LP. These results indicate that the LP process effectively reduces the 
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surface roughness of both samples. Therefore, it is indicated that a smoother initial surface, as evidenced by the 

lower initial 𝑆𝑎  value, results in a more significant improvement in surface roughness after polishing. 

 

 

 

 
Figure 2 Effects of initial surface roughness on final surface roughness after LP processing: (a) initial surface 

roughness of 12 µm, and (b) initial surface roughness of 17 µm. 

 

 

3.Conclusion  

 

 This study has developed an integrated simulation framework to predict the surface roughness of L-PBF 

samples following LP with specific processing parameters. The following are the main study achievements and 

conclusions. The CFD model takes proper account of the effects of evaporation, surface tension forces, and recoil 

pressure on the surface morphology of the laser-polished samples. The simulated values of 𝑆𝑎 after LP processing 

with different energy densities lie within 6.8% of the experimental values. For a rougher initial L-PBF surface 

morphology, the peaks and valleys act as barriers, which slow the speed of the molten metal in the LP process 

and thus reduce the smoothing effect. 
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