
Toward parametric heat transfer solvers in additive manufacturing

Akshay. J. Thomas*, Eduardo Barocio*, Ilias Bilionis*, and R. Byron Pipes**

*School of Mechanical Engineering - Purdue University. West Lafayette, IN, USA.
** School of Aeronautics and Astronautics - Purdue University. West Lafayette, IN, USA.

Abstract

Physics informed neural networks (PINNs) have recently been a popular framework to integrate
experimental data and physics-based constraints specified via partial differential equations. However, the
application of PINNs to additive manufacturing is limited due to the fact that a suitable physics-based loss
function is missing for geometries that evolve. The objective of this work is to address this gap. We propose a
loss function for PINNs to solve the transfer equation on evolving geometries without a mesh-based discretization.
We use our methodology to predict the temperature evolution as a single bead is being deposited. For simplicity,
2D cases are the focus of the work. We consider various cases of mixed Dirichlet and Neumann boundary
conditions and compare our results to finite element simulations. We also present guidelines to obtain consistent
results using the proposed method. We finally discuss the potential of our method in solving parametric heat
transfer problems in additive manufacturing.

Introduction

The increased availability of advanced computational resources, especially graphical processing units
(GPUs), has led to the use of machine learning algorithms in solving applied and classical problems in science
and engineering. Physics-informed neural networks [1] are a technique to seamlessly combine observational data
and known physics in the form of partial differential equations (PDEs). This is achieved by parameterizing a
quantity of interest (for example, a temperature field, a displacement field, etc.) using deep neural networks and
solving a multi-task learning problem to match observational data while respecting the known physics that
governs the physical process. There has also been success in PINNs being used as solvers in the absence of
observational data [2]. PINNs have shown promising results in various fields of computational science and
engineering, including solid mechanics [3], [4], [5], [6], fluid mechanics [7], [8], and material science [9], [10].

PINNs have also been explored in manufacturing applications. Niacki et al. [11] explored the application
of PINNs to model the thermochemical curing process of composite-tool systems. The authors solve a coupled
set of differential equations to predict the degree of cure in a composite part as it is manufactured. Another
example of the application of PINNs is the work in [12]. They solve a parametric problem to optimize process
conditions in composite manufacturing. [13] combined experimental data from a thermal camera with known
physics to predict full-field temperature history and to discover unknown material and process parameters. The
work in [13] used PINNs to predict the thermal history in metal additive manufacturing without simulation data.
Note, however, that the domain itself was not evolving in this case, and parametric solutions were obtained via a
transfer learning approach. The work in [14] used physical laws to augment temperature data obtained from
sensors during a directed energy deposition process. PINNs were also used to predict grain structure in directed
energy deposition[15], process parameter estimation in polymer-based laser sintering[16], and to improve a
thermal model in stereolithography [17]. In the research mentioned above, PINNs do not track the evolving
geometries and boundary conditions. In the cases where the geometry evolves [14], data from sensors are used,
and the physical laws are used to augment the observational data. Further, there is no fundamental research on
how an analyst can build parametric solvers when the geometry evolves.

Solid Freeform Fabrication 2024: Proceedings of the 35th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

945

Therefore, our work focuses on advancing the start of art in PINNs by proposing a new loss function that
can tackle evolving geometries and automatically respect the causality of the problem. The main advantages of
using PINNs are:

(i) Attaining infinitesimal temporal resolution – PINNs do not require spatial mesh or time incrementation
schemes. This is a considerable advantage when small time increments are necessary.

(ii) PINNs do not necessarily require observational data – In the absence of observational data, PINNs
act as PDE solvers. When observational data from experiments are available, one can augment PINNs
by adding a loss term to the existing framework.

(iii) Exact gradient computations are available via automatic differentiation - This is particularly useful
when temperature gradients are required to estimate the quality of bonds formed in additive
manufacturing.

Methodology

Overview of finite element modeling approach

We first describe the finite element (FE) method to solve PDEs on evolving geometries. This method is
termed progressive element activation [18]or the quiet element method in literature[19]. The method begins by
meshing the entire geometry to be deposited, followed by the specification of the G-code. At a given time instance,
a module finds the part of the FE mesh that intersects with the G-code and assigns “mass” to these elements. From
an implementation point of view, the stiffness matrix is assembled for the entire geometry, and the rows
corresponding to the “inactive” nodes are assigned a minimal mass; therefore, their contribution to the solution is
close to zero. For heat transfer simulation this is achieved by multiplying the true thermal conductivity and the
specific heat by a very small value to minimize the transfer of energy to the inactive part of the mesh. This method
can be more easily visualized in Fig. 1. This method involves two levels of discretization. The first is the spatial
discretization induced by the finite elements describing the geometry. Second, a time incrementation scheme that
governs the amount of material deposited at each increment. In cases where sharp temperature gradients are
crucial, for example, when estimating bonding characteristics, very small increments need to be used. This can
prove computationally expensive. In this scenario, a natural question arises: Can Δ𝑇 → 0. This is where we believe
the paradigm of PINNs holds potential. We describe a general introduction to PINNs and our formulation in the
following sections.

Figure 1: Illustration of the element activation technique used in finite element.

Physics-informed neural networks

First, we provide an overview of physics-informed neural networks (PINNs). Consider a physics object,
denoted as 𝒳, which is a subset of the 𝑑 −dimensional Euclidean space. A physical process induces a field, 𝑢, on

946

this object that evolves in time, 𝑡.	Let the evolution of 𝑢 be governed by the initial boundary value differential
equation:

𝑢! + 𝐴𝑢 = 𝑠, 𝑥 ∈ 𝒳, 𝑡 ∈ [0, 𝑇], (1)

where 𝑢! denotes the time derivative of 𝑢, and 𝐴 is a differential operator. The term 𝑠	represents the source term
which can be constant or a function of space, time, or the field 𝑢. The boundary and initial conditions for this
problem are given by

𝐵𝑢 = 0		𝑥 ∈ Τ"	𝑡 ∈ [0, 𝑇], (2)

and
𝑢(0, 𝑥) = ℎ(𝑥)𝑥 ∈ 𝒳, (3)

respectively. When an analytical solution is unavailable, we aim to find an approximate solution that satisfies the
initial boundary value problem. We represent the approximate solution using a neural network and denote it as	𝑢# .
The variable 𝜃 denotes the parameters of the neural network. By plugging 𝑢# into the governing equations, we
obtain the following residual, boundary, and initial condition residuals:

𝑟#
$(𝑡, 𝑥) =

𝜕𝑢#
𝜕𝑡

(𝑡, 𝑥) + 𝐴	𝑢#(𝑡, 𝑥) − 𝑠	,
(4)

𝑟#%&(𝑡, 𝑥) = 𝐵𝑢#(𝑡, 𝑥),
and

(5)

𝑟#'&(𝑡, 𝑥) = 𝑢#(0, 𝑥) − ℎ(𝑥). (6)

We can estimate 𝜃,	by minimizing a weighted composite loss function:

𝑙(𝜃) =
𝜆$
𝑁$

@[𝑟#
$(𝑡' , 𝑥')](

)!

'*+

	+ 	
𝜆%&
𝑁%&

@[𝑟#%&A𝑡, , 𝑥,B](+	+	
𝜆'&
𝑁'&

@[𝑟#'&(0, 𝑥-)](.
)"#

-*+

)$#

,*+

	
(7)

This composite loss can be minimized using a variant of stochastic gradient descent, with the ADAM
[20]optimizer being the most commonly used. Automatic differentiation makes the gradients exactly available
for the higher gradient calculations.

Loss to tackle evolving geometries

For additive manufacturing applications where the material is deposited in a predefined fashion, we
propose the loss function given by

𝑙.(𝜃) = C𝑑𝑡 	𝑙(𝑡, 𝑥(𝑡); 𝜃). (8)

Note the similarities between the loss in Eq. (8) and the one in [21]. The main difference is that we do not need
an extra hyperparameter that controls the degree of respecting causality. To proceed, we need to convert the
integral statement in Eq. (8) to a quantity that is amenable to optimization methods. This is achieved by finding
an unbiased estimator as

𝑙.E(𝜃) =
|𝑇|
𝑁/

@ 𝑙(𝑡/, 𝑥(𝑡/); 𝜃)	
)%

/*+

. (9)

947

The unbiased estimator ensures the stochastic gradient descent algorithm converges to a local minimum as long
the learning rate is a converging sequence. The term 𝑙(𝑡/, 𝑥(𝑡/); 𝜃) is some loss function that represents the
residual of the PDE system, and|𝑇| is the total time. Here, 𝑙 (the term inside the summation in Eq. 9) is chosen to
be the squared loss common in literature. By working out the algebra, we arrive at a loss function defined as

𝑙.E(𝜃) =
𝜆$

𝑁/𝑁$
	@@[𝑟#

$(𝑡' , 𝑥'(𝑡/))](
)!

'*+

)%

/*+

+	
𝜆%&

𝑁/𝑁%&
	@@[𝑟#%&A𝑡, , 𝑥,(𝑡/)B](

)$#

,*+

+		
𝜆'&

𝑁/𝑁'&
	@@[𝑟#%&(𝑡- , 𝑥-(𝑡/))](

)"#

-*+

)%

/*+

.
)%

/*+

(10)

In the above equation, the terms on the right-hand side of the equality are arranged as the PDE residual,

boundary condition residual, and initial condition residual, respectively. The loss function in Eq. (10) is similar
to the loss functions used in literature [22]. However, the main difference is that a nested summation accounts for
the evolution of geometry. We would also like to clarify that the third term in Eq. (10) does not necessarily mean
that the initial condition is evolving. This term is only used when new material is added at a specified condition.
In a heat transfer analysis of additive manufacturing, this condition corresponds to the material added at a
specified temperature. If one wishes to specify an amount of material specified at a temperature at the time, t=0,
one can specify this by adding a loss term to Eq. (10), specifying this condition. In the numerical examples, we
study cases where certain boundaries do not evolve.

Implementation considerations

Below are a few implementation considerations that help with the converge of PINNs to the desired
solution. The suggestions have been meticulously documented in [22]. We perform ablation tests based on these
recent advancements to study the effect of each modification on the accuracy of solving PDEs in evolving
geometries.

PDE non-dimensionalization

In classical machine learning, data normalization is an essential step before training to ensure that the
inputs and outputs are on similar scales [23]. However, the range of target variables is not apriori in forward
problems. Therefore, it is essential to ensure that the features and the output are within reasonable scales. One
way to achieve this is by non-dimensionalizing the PDE. We scale the output to be on the order of one and also
scale the input co-ordinates between zero and one. By this scaling, we end up with effective properties that are
scaled versions of the original values. This ensures that the input variables are consistent with network
initialization schemes, like the Glorot initialization scheme. Further, if the output and inputs vary significantly in
scales, it can lead to difficulties in the training process. Non-dimensionalization alleviates this issue, facilitating
convergence and learning meaningful correlations.

Architecture

Throughout our work, we approximate the latent function u using a deep neural network (DNN). DNNs
are a powerful class of function approximators (a more detailed explanation can be found in [24]). Further, Wang
et al. [24] also proposed a new architecture called the modified DNN that was shown to accelerate convergence
and easier learning of sharp gradients. DNNs are also susceptible to spectral bias, which causes the learning of
low-frequency solutions first. This hinders the learning of steep gradients and fine features of solutions, as
described in [24]. To overcome the spectral bias of DNNs, Tanick et al. [26] proposed passing the inputs through
a high-frequency mapping before being inputted to the DNN layers. This mapping, 𝛾(𝑥) is

948

𝛾(𝑥) = Hcos
(𝑩𝑥)

sin(𝑩𝑥)O,
(11)

where 𝑩 ∈ 𝑅/×1 is sampled from a normal distribution with variance𝜎(. The variable d is the input dimension
of the DNN, and the variable 𝑚 is the number of frequency components the input is mapped to. In this paper, we
choose 𝑚 = 128 and 𝜎 = 1.

Training

A significant challenge in training PINNs is balancing the interplay between the various loss terms to
ensure that one loss term does not dominate the others. Consider the loss term similar to the one derived earlier

𝑙.E(𝜃) = 𝜆$𝑙$E(𝜃) +	𝜆%&𝑙%&V(𝜃) +	𝜆'&𝑙2&	V(𝜃). (12)

To ensure the gradients of the three terms are equal, consider the updates to	𝜆$, 𝜆%& , and 𝜆'& as follows

𝜆$
4$15!. =

W∇#𝑙$(𝜃)W + ‖∇#𝑙%&(𝜃)‖ +	‖∇#𝑙'&(𝜃)‖
W∇#𝑙$(𝜃)W

,
(13)

𝜆%&
4$15!. =

W∇#𝑙$(𝜃)W + ‖∇#𝑙%&(𝜃)‖ +	‖∇#𝑙'&(𝜃)‖
‖∇#𝑙%&(𝜃)‖

,
(14)

𝜆'&
4$15!. =

W∇#𝑙$(𝜃)W + ‖∇#𝑙%&(𝜃)‖ +	‖∇#𝑙'&(𝜃)‖
‖∇#𝑙'&(𝜃)‖

,
(15)

where ‖⋅‖ is the	𝐿(norm. The new weights are then calculated by

𝜆6.7 = 𝛼𝜆891 + (1 − 𝛼)𝜆6.7. (16)

The variable 𝛼 controls the trade-off between the updates and the old values. We observed that specifying an 𝛼
value of 0.9 and updating every 1000 iterations (including the first iteration) provided consistent results.

For the optimizer, we observed consistent results using the ADAM optimizer with the default parameters
suggested in [20]. The sampling of collocation points also play a crucial role in the convergence of the neural
networks to the correct solution of the PDE. We observed that random sampling provided satisfactory results in
our test cases. Further, we suggest random sampling as the first choice since we perform nested sampling. The
sampling strategy involves sampling a random time and by sequentially sampling points in space based on the
current state of the geometry. Our sampling strategy resembles the one presented in [27]. The nested summation
in our loss function implies that as the geometry evolves in time, the collocation point density in space reduces.
This forces the learning of the solution at earlier times first, without the need for either time marching or
curriculum strategies. In our numerical experiments, we did not encounter casualty violations. Nonetheless, it
would be interesting to see if other PDE experience causality violations.

Numerical Examples and Results

We apply our methodology to solve the heat transfer equation on an evolving geometry. We compare the
PINN predictions to a validated FE solver developed at the composites manufacturing and simulation center[18].
To quantify the accuracy of our method, we use the relative 𝐿(error defined as

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐿(𝑒𝑟𝑟𝑜𝑟 =
‖𝑢 − 𝑢#‖
‖𝑢‖ ,

(17)

949

where 𝑢 is the reference solution and 𝑢# is the PINN solution. We also evaluate the absolute error plots to
quantify the accuracy of our predictions as the geometry evolves in time.

Example 1: Evolving geometry with evolving Dirichlet boundary condition

We will lay down the fundamental problem we investigate in this paper using this example. Consider a
domain that evolves in time, Ω(𝑡), such that Ω(0) = 	∅, and Ω(𝑇) = Ω:, where T is the total time and Ω: is the
final part geometry. The geometry evolves in the positive x direction at a constant velocity, 𝑣; = 1.0 with no
velocity component in the y-direction: 𝑣 = [𝑣;	0]. The geometry evolves from 𝑥/'6 = 0	𝑡𝑜	𝑥/5; = 2.5 in 2.5s.
The dimension of the geometry in the y-direction is set to 1. The parabolic differential equation we aim to solve
is

𝛼;
𝜕(𝑢
𝜕𝑥(+ 𝛼<

𝜕(𝑢
𝜕𝑦(=

𝜕𝑢
𝜕𝑡 	on	𝛺(𝑡),

(18)

with the material being deposited at a value 𝑢= = 2.0 on the boundary 𝛤=(𝑡) which is mathematically written as
𝑢 = 𝑢= 	on	𝛤=(𝑡), (19)

and with a specified boundary condition of u> = 0.5 on the boundary Γ>(t) as
𝑢 = 𝑢? 	on	𝛤?(𝑡), (20)

and an adiabatic boundary condition of

k@
∂u
∂x = 0	at	x = 0.

The variables α@ and αA represent the thermal diffusivity in the x, and y direction, respectively. We choose values
for the diffusivity as 𝛼; = 1𝑒 − 2 and 𝛼< = 6𝑒 − 2. The problem can be visualized in Fig. 2.

Figure 2: Illustration of example 1.

Before we proceed, we non-dimensionalize the PDE by introducing scaled versions of the fundamental
variables as

𝑢q =
𝑢
𝑢=
, 𝑥q =

𝑥
𝑥/5;

, 𝑦q =
𝑦

𝑦/5;
, 𝑡̃ =

𝑡
𝑇	.

(21)

We substitute the above into the original PDE and solve the problem in the scaled domain. The loss term for
this problem is

𝑙s(𝜃) = 𝜆$𝑙E$(𝜃) + 𝜆%&𝑙V%&(𝜃) + 𝜆'&𝑙V2&(𝜃) + 𝜆6𝑙E6	(𝜃), (22)

950

𝑙s(𝜃) 	=
𝜆$

𝑁/𝑁$
@@t𝛼q;

𝜕(𝑢q#
𝜕𝑥(+ 𝛼q<

𝜕(𝑢q#
𝜕𝑦q(−

𝜕𝑢#u
𝜕𝑡̃ v

()!

'*+

)%

/*+

+
𝜆%&

𝑁/𝑁%&
@@H𝑢q# −

𝑢?
𝑢=
	O
(

)$#

,*+

)%

/*+

+
𝜆'&	

𝑁/𝑁'&
@@H𝑢q# −

𝑢=
𝑢=
	O
(

)"#

,*+

)%

/*+

+
𝜆6
𝑁6

@Hkw@
∂𝑢q#
∂𝑥q O

(

.
)&

6*+

(23)

Note that the first three terms on the right hand side have nested summations to account for the evolution of
geometry. However, the last term does not require this nested summation since this boundary does not evolve.
For this example, we use a DNN with 4 hidden layers and 128 neurons in each layer as the backbone model. We
use the Tanh activation function. The parameters are initialized using the Glorot scheme, and the network
parameters are trained using the ADAM optimizer with an initial learning rate of 5e-4, with an exponential decay
at a rate of 0.9 every 1000 iterations. The total number of iterations is set to be 200000. The different batch sizes
are chosen as 𝑁$ 	 = 8, 𝑁$ = 𝑁% = 𝑁'& = 𝑁6 	 = 	1024.

The 𝐿(error is calculated only for the geometry that has been deposited. We summarize the average 𝐿(
error over the entire time for the ablation studies in Table 1.

Note that all cases have low error, and we investigate the case with the lowest error. This is the case where
the modified DNN is used with the Fourier features and loss gradient balancing. The evolution of the loss and the
loss weights for this case is shown in Fig. 3. In Fig. 4, we plot the spatial temperature field at various time instances
and observe that our PINN predictions are in close agreement with the FE solution.

951

Figure 3:Loss terms and weight terms for example 1.

Figure 4: Comparison of FE solution to PINN solution for example 1.

952

Example 2: Geometry with evolving Dirichlet and Neumann boundary conditions

In this example we keep the same settings as the previous examples but we add a convection boundary
condition given as

𝑘<𝜕𝑢
𝜕𝑡 = −ℎ𝑢	𝑜𝑛	Γ)(𝑡)		

(24)

We choose the value of h=15 to promote significant heat losses from this boundary. The problem can be visualized
in Fig. 5

Figure 5: Illustration of example 2.

After non-dimensionalization, the loss is derived as

𝑙 = 𝜆$𝑙$ + 𝜆%&𝑙%& + 𝜆'&𝑙'& + 𝜆6&𝑙6&𝜆6𝑙6 	 (25)

=
𝜆$

𝑁/𝑁$
@@t𝛼q;

𝜕(𝑢q#
𝜕𝑥(+ 𝛼q<

𝜕(𝑢q#
𝜕𝑦q(−

𝜕𝑢#u
𝜕𝑡̃ v

()!

'*+

)%

/*+

+
𝜆%&

𝑁/𝑁%&
@@H𝑢q# −

𝑢?
𝑢=
	O
(

)$#

,*+

)%

/*+

+
𝜆'&	

𝑁/𝑁'&
@@H𝑢q# −

𝑢=
𝑢=
	O
(

)"#

,*+

)%

/*+

+
𝜆6&

𝑁/𝑁6&
@@t

𝑘w<𝑢q#
𝜕𝑡̃ + ℎ𝑢q#v

()&#

,*+

)%

/*+

+
𝜆6
𝑁6

@Hkw@
∂𝑢q#
∂𝑥q O

()&

6*+

(26)

For this example, we use a DNN with 4 hidden layers and 128 neurons in each layer as the backbone
model. We use the Tanh activation function. The parameters are initialized using the Glorot scheme, and the
network parameters are trained using the ADAM optimizer with an initial learning rate of 5e-4, with an
exponential decay at a rate of 0.9 every 1000 iterations. The total number of iterations is set to be 200000. The
different batch sizes are chosen as 𝑁$ 	 = 8, 𝑁$ = 𝑁% = 𝑁'& = 𝑁6& = 𝑁6 	 = 	1024.

The 𝐿(error is calculated only for the geometry that has been deposited. We summarize the average 𝐿(
error over the entire time for the ablation studies in Table 2.

953

Note that all cases have a low error, and we investigate the case with the lowest error. This is the case
where the modified DNN is used with the Fourier features and no loss gradient balancing. The evolution of the
loss and the weights for this case is shown in Fig.6 In Fig. 7, we plot the spatial temperature field at various time
instances and observe that our PINN predictions are in close agreement with the FE solution.

Figure 6: Loss terms and weight terms, for example, 2. Note that the weights are all one since this is the setting that attained the lowest
error.

Conclusions

We presented a method to use PINNs in evolving geometries. We achieve this by proposing a new loss
function that respects the causality of the addition. We performed systematic ablation studies to investigate the
recent advancements made and their application to our work. Our method contrasts with the finite element
formulation as it does not require spatial or temporal discretization. This underpins a major advantage of our
method: we can query the solution at arbitrarily small time increments. Obtaining a similar temporal resolution
using the finite element method can be computationally expensive. Further, our method is naturally biased to
learn temporally causal solutions, facilitated by the decreases in collocation point density for increasing times.
While our work presented a comprehensive analysis of the addition of a single bead, the question of depositing
multiple beads still remains open. We are currently investigating methods to solve multiple bead addition without
having to solve sequential problems. The sequential addition of layers was solved in the thesis work by [28]. It is
essential to clarify that this method is not meant to replace classical solvers like the finite element method. For
single, forward simulations, finite element solvers are more efficient and reliable. Further, we assumed that the
geometry evolution is predefined. This is reasonable for extrusion-based additive manufacturing. However, for

954

metal additive manufacturing, where the melt pool geometry depends on the laser power, modifications to our
method are necessary [29]. Nonetheless, our work presents an opportunity to extend to parametric PDEs, which
interests practicing engineers who require surrogate models for optimization, control, and uncertainty
quantification. Therefore, our immediate next step is to evaluate the paradigm of physics-informed operator
learning applied to evolving geometries.

The true advantage of PINNs is when used to solve parametric or stochastic PDEs, as shown in [30].
However, the extension to parametric PDE can be achieved by integrating our proposed loss function over the
parameter space and then finding an unbiased estimator for the same. We are currently extending this method to
parametric PDEs and systematically evaluating its advantages and pitfalls.

Figure 7: Comparison of FE solution to PINN solution for example 2.

Acknowledgments

Akshay J Thomas and Ilias Bilionis were supported by the AFOSR program on materials for extreme
environments under grant number FA09950-22-1-0061. This research was also partly sponsored by the
Composites Additive Manufacturing and Simulation (CAMS) consortium at Purdue University.

955

References

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations,” J Comput Phys, vol. 378, pp. 686–707, 2019.

[2] D. C. Psichogios and L. H. Ungar, “A hybrid neural network-first principles approach to process
modeling,” AIChE Journal, vol. 38, no. 10, pp. 1499–1511, 1992.

[3] J. Bai, T. Rabczuk, A. Gupta, L. Alzubaidi, and Y. Gu, “A physics-informed neural network technique
based on a modified loss function for computational 2D and 3D solid mechanics,” Comput Mech, vol.
71, no. 3, pp. 543–562, 2023.

[4] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A physics-informed deep learning
framework for inversion and surrogate modeling in solid mechanics,” Comput Methods Appl Mech
Eng, vol. 379, p. 113741, 2021.

[5] Y. Diao, J. Yang, Y. Zhang, D. Zhang, and Y. Du, “Solving multi-material problems in solid
mechanics using physics-informed neural networks based on domain decomposition technology,”
Comput Methods Appl Mech Eng, vol. 413, p. 116120, 2023.

[6] A. Henkes, H. Wessels, and R. Mahnken, “Physics informed neural networks for continuum
micromechanics,” Comput Methods Appl Mech Eng, vol. 393, p. 114790, 2022.

[7] L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data,” Comput Methods Appl Mech Eng, vol. 361, p.
112732, 2020.

[8] A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B. Zhu, and B. N. Rogers, “Uncovering
turbulent plasma dynamics via deep learning from partial observations,” Phys Rev E, vol. 104, no. 2,
p. 25205, 2021.

[9] Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial design,” Ieee Access,
vol. 8, pp. 24506–24513, 2019.

[10] Z. Liu et al., “Additive manufacturing of metals: Microstructure evolution and multistage control,” J
Mater Sci Technol, vol. 100, pp. 224–236, 2022.

[11] S. A. Niaki, E. Haghighat, T. Campbell, A. Poursartip, and R. Vaziri, “Physics-informed neural
network for modeling the thermochemical curing process of composite-tool systems during
manufacture,” Comput Methods Appl Mech Eng, vol. 384, p. 113959, 2021.

[12] T. Würth, C. Krauß, C. Zimmerling, and L. Kärger, “Physics-informed neural networks for data-free
surrogate modeling and engineering optimization–An example from composite manufacturing,”
Mater Des, vol. 231, p. 112034, 2023.

[13] S. Liao, T. Xue, J. Jeong, S. Webster, K. Ehmann, and J. Cao, “Hybrid thermal modeling of additive
manufacturing processes using physics-informed neural networks for temperature prediction and
parameter identification,” Comput Mech, vol. 72, no. 3, pp. 499–512, 2023.

[14] J. Xie, Z. Chai, L. Xu, X. Ren, S. Liu, and X. Chen, “3D temperature field prediction in direct energy
deposition of metals using physics informed neural network,” The International Journal of Advanced
Manufacturing Technology, vol. 119, no. 5, pp. 3449–3468, 2022.

[15] D. Kats, Z. Wang, Z. Gan, W. K. Liu, G. J. Wagner, and Y. Lian, “A physics-informed machine
learning method for predicting grain structure characteristics in directed energy deposition,” Comput
Mater Sci, vol. 202, p. 110958, 2022.

956

[16] T. Yang, T.-N. Tsai, and J. Yeh, “A neural network-based prediction model for fine pitch stencil-
printing quality in surface mount assembly,” Eng Appl Artif Intell, vol. 18, pp. 335–341, 2005, doi:
10.1016/j.engappai.2004.09.004.

[17] G. Tod, A. P. Ompusunggu, G. Struyf, G. Pipeleers, K. De Grave, and E. Hostens, “Physics-informed
neural networks (PINNs) for improving a thermal model in stereolithography applications,” Procedia
CIRP, vol. 104, pp. 1559–1564, 2021.

[18] E. Barocio, P. Pibulchinda, A. J. Thomas, V. Kapre, and A. Franc, “Validated Simulation for Large
Scale Additive Manufacturing.,” CAMX 2022, 2022.

[19] P. Michaleris, “Modeling metal deposition in heat transfer analyses of additive manufacturing
processes,” Finite Elements in Analysis and Design, vol. 86, pp. 51–60, 2014.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[21] S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality for training physics-informed neural
networks,” Comput Methods Appl Mech Eng, vol. 421, p. 116813, 2024.

[22] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, “An expert’s guide to training physics-informed
neural networks,” arXiv preprint arXiv:2308.08468, 2023.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the thirteenth international conference on artificial intelligence and
statistics, 2010, pp. 249–256.

[24] I. Goodfellow, Deep Learning. MIT Press, 2016.
[25] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient flow pathologies in

physics-informed neural networks,” SIAM Journal on Scientific Computing, vol. 43, no. 5, pp.
A3055–A3081, 2021.

[26] M. Tancik et al., “Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains,” Adv Neural Inf Process Syst, vol. 2020-December, Jun. 2020, Accessed: Sep.
15, 2024. [Online]. Available: https://arxiv.org/abs/2006.10739v1

[27] C. L. Wight and J. Zhao, “Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
physics informed neural networks,” arXiv preprint arXiv:2007.04542, 2020.

[28] A. Jacob Thomas, “ACCELERATING COMPOSITE ADDITIVE MANUFACTURING
SIMULATIONS: A STATISTICAL PERSPECTIVE,” Purdue University Graduate School, 2023.

[29] M. Ansari, A. Martinez-Marchese, Y. Huang, and E. Toyserkani, “A mathematical model of laser
directed energy deposition for process mapping and geometry prediction of Ti-5553 single-tracks,”
Materialia (Oxf), vol. 12, p. 100710, 2020.

[30] S. Karumuri, R. Tripathy, I. Bilionis, and J. Panchal, “Simulator-free solution of high-dimensional
stochastic elliptic partial differential equations using deep neural networks,” J Comput Phys, vol. 404,
p. 109120, 2020.

957

