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Abstract

Directed Energy Deposition (DED) is one of the highest production rate additive man-
ufacturing processes, yet it often faces challenges with dimensional accuracy and surface
finish compared to powder bed fusion. Fabricating structures with internal cavities using
DED is typically constrained unless a five axis motion system is employed, allowing for
the maintenance of a normal to gravity orientation during deposition, which is essential
for creating overhanging features and completing enclosed cavities. This capability is
particularly valuable for applications sich as pressure vessels and geometrically complex
hot isostatic pressing (HIP) containers. The present work explores the tool path strategy
required to construct a toroidal cylinder with an internal cavity. Leak testing and cross-
sectional analysis such as optical microscopy and the Archimedes density test, confirm
that the structure is sufficiently pressure’tight and exhibits minimal porosity, making it
suitable for use as complex HIP can, thus paving the way for the next generation of
multi-material, digitally-driven powder metallurgy.
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1. Introduction

Manufacturing is evolving to leverage simultaneously the benefits of additive
manu-facturing (AM) - such as geometric freedom, part customization, and low waste
—with the dimensional accuracy and surface finish of machining [1–4]. In hybrid
manufacturing, additive and subtractive processes are integrated within a single build
chamber, allowing for the creation of features that would be difficult or impossible to
achieve with either method alone [5–7]. Examples include internal cavities with
machined surfaces [8] and internally embedded components [9, 10].

Directed Energy Deposition (DED), the AM process employed in this study, has been
extensively explored since the mid-1990s [11–15] for building metal, ceramic, and polymer
structures [6, 16–23]. DED uses powder or wire feedstock melted by a laser, electric arc,
or electron beam [24]. In powder-based systems, powder is delivered to the deposition
point via a focused inert gas flow, coinciding with a laser source that melts the powder
onto the structure [18]. The result is a strong metallurgical bond between layers or to
the substrate, offering full spatial control for on-demand alloying, surface coatings, and
component repair [21, 25–28].

Hot Isostatic Pressing (HIP) is a commonly used post-processing technique, especially
in the qualification of aerospace structures made via AM. HIP enhances the quality of
printed structures, particularly those with complex geometries formed by electron beam
[29–37] or laser [38–46] Powder Bed Fusion (PBF), as well as DED [47–51] and Material
Extrusion [52]. By applying high temperature and pressure simultaneously, HIP densi-
fies structures and homogenizes their microstructure [53]. HIP is effective in closing large
pores (up to 3 mm in diameter) in Ti6Al4V and steel structures made by both traditional
and additive methods [54–59]. The increased density from HIP improves fatigue perfor-
mance [60], making it a standard final process for additively manufactured aerospace
components [29, 61]. The concept of building HIP cans using AM has been investigated,
particularly through PBF. In these studies, shell geometries were fabricated with inter-
nal cavities containing trapped, unmelted powder [62, 63], and included the evaluation
of fatigue properties [64]. However, these works were limited to a single-material pow-
der, matching the shell material. PBF is currently specialized for small to medium-sized
components due to production speed constraints, but HIP offers more significant advan-
tages for large components. In this context, hybrid DED excels, as it can produce larger
components with material versatility, though it may require additional post-processing
to achieve the desired surface finish and detail. Finally, as laser PBF is not
typically performed in a hard vacuum, gasses were included with the trapped powder,
which could lead to thermally induced porosity after subsequent high temperature
exposure [65, 66]. Further considerations for AM-enabled HIP canning include the
requirement for can ma-terials to have good ductility to distort with the consolidation of
internal powder but also be sufficiently strong to maintain the pressure.

The present work investigates the capability of hybrid AM to build a metallic
pres-surized vessel to enable applications such as rocket fuel tanks, but more
specifically for enhancing powder metallurgy by fabricating geometrically complex HIP
containers. The digital-driven paradigm of AM can now enable new geometries from
CAD directly for use as HIP cans - not be easily fabricated with traditional approaches.
Furthermore, AM HIP cans can include features to facilitate the introduction of
powders with pre-attached fill
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tubes, simulation-driven geometry compensation for HIP deformation, varying thickness 
walls to optimize the final geometry, and multiple chambers to introduce different metals 
geometrically. These structures, if capable of holding high pressures without leakage, can 
be: (a) filled w ith metal p owder; ( b) e vacuated w ithout d isturbing t he i nternal powder 
to reduce thermally induced porosity, and then finally; ( c) w elded h ermetically closed 
in preparation of HIP for comprehensive consolidation. Consequently, AM can enable a 
new generation of powder metallurgy in which HIP canning can provide multi-material 
unique geometries.

2. Methodology

2.1. Materials

AISI Type 316L Stainless Steel (SS316L) was selected for this work due to its rel-
evance in several industrial applications [67] and well-documented properties in prior 
AM research [22, 68]. SS316L powder was deposited onto a cylindrical (155 x 50 mm) 
SS316L substrate. The gas-atomized powder (Oerlikon Metco (US) Inc.) had a particle 
size distribution with percentiles of D10 = 54.02 µm, D50 = 73.35 µm and D90 = 114.50 
µm. Helium was selected as the carrier gas for the powder due to its availability in 
the machine setup.

2.2. Manufacturing Procedure
The component was manufactured on an Okuma MU8000V-L Laser EX hybrid man-

ufacturing system (Figure 1). The DED fabrication process was carried out using param-
eters established in previous studies, as detailed in Table 1. The internal cylinder was 
fabricated using an additive turning toolpath, developed by OPEN MIND Technologies 
AG as a component of its hyperMILL CAM software. The additive turning toolpath 
allows axisymmetric components with fluctuating wall thickness to b e manufactured by 
employing a combined raster-spiral method.

Fig. 1 Okuma MU8000V-L LASER EX five-axis hybrid blown-powder directed energy 
deposition system (left) and toroidal structure with internal cavity in fabrication (right).

The component was designed to have a height of 165mm, a wall thickness of 4mm, 
and an inner diameter of 95mm. For the additive turning parameters, the pitch-X and 
pitch-Z were 2.4mm and 0.66mm [69]. For the outer cylinder, the deposition angle was
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Table 1 DED Process Parameters

Parameter LP-DED

Laser sport diameter (mm) 3.5
Laser power (W) 2,000
Powder feed rate (g/min) 8.6
Traverse feed rate (mm/min) 500*
Layer height (mm) 0.35
Argon shield flow rate (l/min) 10
Helium carrier flow rate (l/min) 5

*Unless noted otherwise

tilted to 30° to avoid obstruction (Figure 2b). Since the outer cylinder was printed at an
oblique angle, the traverse speed was adjusted to maintain the proper standoff or distance
between the deposition nozzle and deposition surface. An initial traverse feed rate of 900
mm/min was used but was manually adjusted between 500 mm/min and 900mm/min
until stabilizing on a final traverse feed rate of 700 mm/min. These adjustments are
common in many DED systems and can be detrimental to both geometrical accuracy
and metallurgical properties of the final component. However, for HIP cans, the authors
expect these changes to be irrelevant if the HIP can hold a vacuum. As the HIP can be
removed upon final machining, the minor variance in the processing conditions is expected
to be inconsequential.

Fig. 2 Steps in the fabrication: a) first interior cylinder; b) second exterior cylinder; c) first 
of two half arcs; and d) final deposition on the top seam.

The final steps include maintaining a normal with gravity and creating a half arc from 
the interior cylinder top to span halfway to the exterior cylinder (Figure 2c and Figure 3). 
A second arc is performed from the external cylinder back to the interior at a rate of 650 
mm/min to complete the arch to serve as an unsupported roof of the now cavity. A final 
additional layer was deposited using a weaving strategy between the two half arcs to close 
any areas that did not fully fuse and to reinforce the arc structure with a seam at a feed 
rate of 500 mm/min (Figure 2d). This weave strategy used a pitch of 10 mm and a pitch 
of 2 mm. The resulting structure, including the build plate, now contains a cylindrical 
internal chamber which was hypothesized to be capable of handling a vacuum. Additional 
features such as feed tubes or additional machining could be included for smooth surfaces
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or prescribed wall thickness as is required. Future work will investigate these and other
advantages for HIP for advanced geometrically complex powder metallurgy.

Fig. 3 Tool path for the first arc of the cavity roof printed with constant normal to gravity
and schematic of deposition. Path (left) and deposition simulation (right). Yellow lines

correspond to G1 (deposition) movement, while the red line corresponds to G0 (reposition)
movement.

2.3. Leakage Testing
The vacuum and pressure integrity of the additively manufactured HIP container was

verified by methodically spraying helium gas from a nozzle over the container and sealing
flange assembly shown in Figure 4 . The sealing flange arrangement was made by tapping
a 2mm hole into the build plate and then mounting a face flange a nd O -ring t o make
the effect o f a  vacuum s eal. The s eal was t hen mated t o a  Swagelok t ube a nd bellows
connected to a Varian MD30 helium leak detector.

Fig. 4 Vacuum testing setup with DED manufactured cylinder with connected baseplate on
top.

2.4. Density and Porosity Characterization
After pressure testing, the container was cross sectioned in half along the XZ plane

using a bandsaw. Subsequently, a 30 mm thick slice was removed, and then three samples
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were obtained by making cuts at 40 mm, 56.5 mm, and 78.5 mm from the slice’s top
surface, producing a double-walled 40 mm tall arch (sample 1), a 16.5 mm tall external
wall (sample 2), and a 22 mm tall external wall (sample 3).

The density and porosity of the samples was evaluated via Archimedes’
suspension method [70] and micrographic analysis. Archimedes’ method was performed
using ethanol at 23 °C with an Ohaus Explorer balance and densities were reported as 
a percentage of the 8.0 g/cm3 theoretical density (TD) for SS316L [71, 72]. Samples 
1 and 3 were then mounted in epoxy, ground using 500, 800, 1000, and 2000 grit
silicon carbide discs in 1 min intervals with water as the lubricant, and then polished
using 6, 3, and 1 µm diamond solution with DP-Lubricant Purple in 8 min intervals.

The samples were optically imaged using a Leica DM4000M microscope at a resolution
of 1 µm/pixel, employing a brightfield contrasting method with a 5X magnification. The 
Leica Application Suite X software automatically captured and stitched images of the
entire mounted cross-sections into mosaics, enabling the analysis of statistically significant
sample sizes. These images were then processed and analyzed using ImageJ®[73]. For 
porosity characterization, the images were binarized by thresholding to measure pore
area, size, and total porosity area fraction (black-to-total pixel ratio). Special focus was
placed on the quality of the cavity-roof arch, which was difficult to fabricate due to
the oblique deposition angle used to align the DED process with gravity and avoid
internal supports.

3. Results and Discussion

The most challenging aspect of this structure was after the completion of the
two independent cylinders. Two half arcs were built to span between the cylinders
and to provide a sealed cavity. The arcs were created using the tool path shown in
Fig. 3, resulting in a non-closed surface remaining after the two operations. A final
bead was then deposited to complete the full arch and to provide a sealed and
pressure-capable cavity as shown in Fig. 5.

Fig. 5 Fabrication results: (left) after completing inner half arch; (middle) after completing
both arches but with gaps remaining; (right) after final bead for complete seal.

3.1. Leakage Testing
Measurements on the sealed additively manufactured container showed a helium leak

rate of ∼ 1.0 × 10−9 Nml/min or less, indicating sufficient integrity fo r subsequent HIP 
trials. By spraying helium around the structure during the cavity vacuum pull, any
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leaks can be detected, and their locations identified. F uture s tudies w ill incorporate 
machining to create precise, thin walls to enhance compliance and ductility for use as a 
HIP can. In this initial proof-of-concept demonstration, the structure successfully held a 
vacuum, suggesting that additively manufactured structures have potential for creating 
geometrically complex HIP cans. During the leak test, we also observed remnant powder 
from the deposition process inside the enclosed vessel. Despite efforts t o r emove the 
excess powder through the vacuum port, complete removal was challenging. This residual 
powder can damage vacuum test equipment, so future work will focus on developing 
strategies for powder removal and mitigation.

3.2. Density and Porosity Characterization
After completing the non-destructive leak testing, the part was cross-sectioned to 

assess the walls and top arch. The cross-section revealed no major defects or issues with 
the cavity’s integrity (Fig. 6). The wall in this example was 3.5 mm thick with 
rough internal and external surfaces. One advantage of hybrid AM is the ability to 
machine both internal and external surfaces of cavities, allowing precise control over wall 
thickness and surface finish for HIP containers. Thinning the walls can enhance the 
structural ductility needed for effective HIP canning, enabling the container to 
compress fully and consolidate the internal powder. In contrast, excessively thick and 
stiff walls could hinder this consolidation during pressing.

AM alone, typically used for near-net shape fabrication, may not achieve the wall 
thickness precision required for HIP containers. However, by using in situ machining and 
HIP simulations, wall thickness can be varied to guide solidification shrinkage and ensure 
the final s tructure m eets t he i ntended g eometry. T his a bility t o v ary w all thickness, 
along with creating complex geometric forms, is a key reason for using hybrid AM in the 
fabrication of HIP containers.

Fig. 6 Manufactured HIP-can : (left) after cross-sectioning, with numbers indicating the
samples used for density and porosity characterization; (right) binarized optical micrograph of

sample 1.

Based on the quantification of porosity area fraction, samples 1 and 3 were 99.90% and
99.96% dense, respectively. However, the densities derived via Archimedes’ method for
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samples 1-3 were 99.12%, 98.95%, and 99.12%, respectively (Table 2), which are slightly 
lower than the SS316L densities reported in the DED literature [74–76].

Table 2 Density and Percentage Values by Section

Section Density (g/cm3) %

1 7.92 99.11
2 7.91 98.95
3 7.92 99.118

Sample 1 pores (1,802) measured 6.8 ± 0.8 µm while sample 3’s (607) measured 6.4
± 0.4 µm. Their corresponding pore size distributions (Fig. 7) showed exponential decay
with approx. 95% of pores measuring ≤ 30 µm. The remaining 5% of pores, ranging
from 30.0-195.2 µm and 30.0-137.9 µm for samples 1 and 3, respectively, let to the lower
than expected part density. Compared to sample 3, the higher frequency of pores ≤ 4
µm in sample 1 is attributed to its larger volume.

Fig. 7 Pore size distribution for sample 1 (left) and sample 3 (right). Sample numbers
correspond to those shown in Fig. 6.

4. Conclusions

The present preliminary investigation demonstrates the potential of a hybrid additive
manufacturing system in fabricating complex geometries with vacuum-capable internal
cavities, specifically for HIP canning applications. The system’s five-axis capabilities
successfully produced a structure with complex overhanging features, avoiding the need
for support material and showcasing the feasibility of building sophisticated designs.
Importantly, the HIP can was effectively designed using an additive turning toolpath,
which facilitates the production of axisymmetric components with varying wall thick-
nesses through a combined raster-spiral technique. Although machining was not required
in this proof of concept, the hybrid approach ensures that wall thickness can be meticu-
lously controlled, with internal cavity surfaces accessible for machining during fabrication.

The fabrication process included challenges, particularly in sealing the internal cavity
after building two independent cylinders. The application of a final bead after the con-
struction of the half arcs successfully completed the seal, resulting in a pressure-capable
cavity. Leak testing confirmed the integrity of the sealed structure, showing a helium
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leak rate of ∼ 1.0 × 10−9 Nml/min, which is sufficient for subsequent HIP trials. The
implications of this work are significant for the future of HIP container manufacturing.

Hybrid fabrication enables:

1. Complex, digitally driven HIP can geometries supported by process simulation

2. Variable thickness walls to control and optimize warpage and shrinkage

3. Multiple chambers for multi-material powder metallurgy

4. Inclusion of HIP-can features such as feed tubes to easily weld and seal ports after
introducing and evacuating powders and just prior to HIP densification of the final
HIP can structure.

Despite the generally slower production rates of additive manufacturing compared to
traditional sheet metal welding, the design freedom and digital precision offered by this
approach introduce new possibilities for HIP can geometries that are otherwise unattain-
able. The hybrid process allows for the near-net shape fabrication of multi-chamber
shells, with in situ machining to achieve precise dimensional accuracies. Additionally,
HIP simulations can preemptively compensate for deformation and shrinkage, further
enhancing the potential for complex, multi-material structures. The digitization of the
HIP canning process marks a significant advancement in powder metallurgy, paving the
way for the next generation of geometrically complex, high-temperature, multi-material
structures. Ultimately, hybrid additive manufacturing not only enhances the precision
and flexibility of HIP can fabrication but also optimizes consolidation during pressing
through the ability to machine surfaces and control wall thickness. These advancements
promise to improve yield, quality, and production rates for AM-enabled HIP canning,
advancing the field of multi-material, digitally-driven powder metallurgy beyond current
capabilities and potentially redefining economic benchmarks in industry.
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