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Abstract 

In order for metal additive manufacturing to be more effectively and widely used in 
industry, greater process control is needed. One way to achieve this is through the use in-situ 
process monitoring, such as using layer-wise infrared imaging to detect porosity in electron beam 
powder bed fusion. Due to the pores having more emissivity than the solid part, they appear 
brighter in infrared images and can therefore be detected by using image processing techniques. 
This work compares how applying different image filtering and gradient types can detect these 
brighter spots correlating to developing pores. Results were both qualitatively assessed using 
image appearance and histogram distributions and quantitatively assessed using pixel-to-pixel 
comparison to x-ray computed tomography scans. Gradients that use larger kernel sizes 
(specifically three-by-three) were more accurate in detecting porosity, and this was further aided 
by a gaussian or anisotropic diffusion filter. 

1. Introduction

****************************************************************************** 
Metal additive manufacturing (AM) has seen a significant rise in use in both industry and 

research settings due to its ability to create parts with numerous freedoms (such as geometry, 
microstructure, etc.) that are not available with other manufacturing methods [1][2]. However, 
since AM is significantly newer than traditional manufacturing processes, these processes have 
less understanding, especially with quality control [3]. Therefore, in-situ process monitoring has 
been implemented in both industrial and research applications. These types of process monitoring 
systems have been used to detect various defects in different metal AM processes such as laser 
powder bed fusion (PBF-LB) and electron beam powder bed fusion (PBF-EB). These defects 
include geometric defects (such as geometric accuracy [4], high surface roughness [5], and dross 
formation [6]), powder bed defects (such as short coating [7], hopping [8], and streaking [9]), and 
porosity [10]. Detecting these defects is critical because their presence can impact the parts overall 
performance, such as reducing tensile strength [11] or fatigue strength [12]. 

To accomplish this, a variety of sensors have been used. Some sensors include acoustic 
sensors [13], ultrasonic sensors [14], accelerometers [15], and photodiodes [16]. Imaging, both 
visible-light [17] and infrared-light spectrum [18], is one of the more common sensor types due to 
its ease of use and processing. Infrared (IR) imaging is effective for detecting heat-related defects 
such as porosity in PBF processes. This is especially true for PBF-EB because pores are caused by 
buildups of heat energy in unmelted sections that give off excess IR thermal radiation and therefore 
appear as bright spots in IR images [19]. Previous researchers have used IR imaging to detect pores 
[20], understand how they form [21], and measure the reaction to interlayer cool time [10].  
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 Since the IR cameras export data in the form of images, numerous image processing 
techniques have been applied to extract relevant data from the images. Due to the pores appearing 
as bright spots in the IR images, thresholding has been a common processing technique. Global 
thresholds, which use a preset grayscale value have been used to detect temperatures above a 
certain value [22] and to fine regions for further analysis of porosity formation [23]. Statistical 
thresholds, which calculate a threshold for each image using the distribution of grayscale values, 
have been used for porosity detection [24]. Another common technique is detecting gradients in 
the IR images, since the pore pixels will be significantly brighter than the surrounding solid part 
[25]. Finally, machine learning (ML) algorithms have been applied to these types of images. These 
algorithms often use the grayscale values alongside feature-based methods (such as identifying 
certain shapes) [26], but these methods are typically used for more complicated detection 
applications, such as distinguishing between lack of fusion and keyholing porosity [27] or 
determining porosity alongside other defects such as surface roughness [28]. However, it should 
be noted that ML methods require training time and significant computing power compared to the 
more basic image processing methods. 
 
 Finally, to verify the validity of these in-situ process monitoring systems, ex-situ evaluation 
has been used. The growing field of non-destructive evaluation (NDE) has provided numerous 
opportunities for measuring part quality without damaging them, allowing the parts to be used later 
or reevaluated if necessary. One NDE method that has seen high use in AM is X-ray computed 
tomography (XCT) [29]. XCT has been used to verify porosity formation in numerous systems 
including pyrometry [30], both optical [31] and near-IR imaging [32], and multi-sensor fusion 
systems [33]. 
 
 However, with all this previous work, two main gaps remain. First, for using these image 
processing techniques, there is a notable lack of optimization for this use case both from how to 
determine the gradient and how to preprocess the images for segmentation. Second, most instances 
using a ground-truth measurement for verification have used manual, subjective registration, 
having the user align the datasets, especially in PBF-EB. This work aims to address both gaps by 
1) using a rigorous, feature-based registration process to align the in-situ test dataset and the ex-
situ reference dataset, and 2) using the registration to quantitatively evaluate the effectiveness of 
5 different gradient methods (Sobel, Prewitt, Central, Intermediate, and Roberts) with 4 different 
prefilters (no filter, median filter, gaussian filter, and anisotropic diffusion filter). Each of these 
combinations of gradients and prefilters were qualitatively observed and quantitatively evaluated 
for their effect on successfully detecting and measuring porosity. XCT scans of the parts served as 
a ground-truth reference, using a sufficiently small voxel size to properly detect porosity and 
evaluate the gradient segmentation process. Insights from these results give future researchers and 
machine operators a greater understanding of how each of these gradients and filters affect the 
accuracy of detecting porosity from in-situ IR images. 
 

2. Methods 
 
****************************************************************************** 
2.1 Sample Design and Manufacturing 
 Samples were manufactured on an ARCAM Spectra L out of Ti-6Al-4V using ARCAM 
theme 6.1.12 and a layer thickness of 70 µm. To create varying levels of porosity, the focus offset 
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(FO) was varied to 55, 65, and 75 mA, as increasing FO has a correlation with generating porosity 
from the literature [21]. 9 samples were manufactured for each FO for a total of 27 samples. 
Samples were organized in the build layout in groups of 9 samples (3 of each FO) as shown in 
Figure 1. All samples were designed as cylinders with a flat vertical surface to facilitate registration 
of IR and XCT datasets (Figure 2). 

Figure 1: IR image showing layout of samples within each grouping of 9 samples with A) 3 
samples with FO = 55 mA, B) 3 samples with FO = 65 mA, and C) 3 samples with FO = 75 mA 
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Figure 2: Sample design with registration features 

2.2 X-Ray Computed Tomography Scanning and Processing 
Manufactured samples were XCT scanned on a Zeiss Metrotom 800 XCT. A nylon fixture 

(low x-ray attenuation) was used to ensure all scans were in the same orientation using a voltage 
of 130 kV, current of 61 µA, a 0.25 mm copper filter, and 1600 projections. The resulting scan 
had a voxel size of 12 µm. After being reconstructed using a Feldkamp-David-Kress reconstruction 
algorithm and Shepp-Logan digital filter [34], registration was performed using MATLAB code 
developed by the research team. First, a surface was generated by segmenting the material 
grayscale values from the air using an ISO-50 threshold. Then, points on the surface were sampled 
in the cylindrical section. A cylinder was fitted to these points, and the central axis of this cylinder 
became the primary datum. Next, points were sampled on the vertical face, and a plane was fitted 
to these points. The perpendicular axis became the secondary datum. Finally, points were sampled 
on the top face, and another plane was fitted to these points, which became the tertiary datum. 
Using these datums, a rotation matrix was calculated. 

Once registration was performed, the XCT images were segmented using Weka 3D 
segmentation in ImageJ [35]. This program allows the user to manually classify pixels that are 
used to train a machine learning algorithm to apply to future images. A training set of images was 
created using images from each sample’s image stack. After each round of training, the results 
were manually evaluated for accuracy and retrained if necessary. Classes used were Solid Part, 
Pore, Fixture, and Air. To reduce noise, a Gaussian convolution with window sizes of 1, 2, 4, and 
8 voxels. Once the operator deemed the model sufficiently trained and correctly identifying pixels, 
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it was applied to the remaining images for segmentation [36]. An example of this is shown in 
Figure 7. 
 
2.3 Infrared Imaging and Gradient Segmentation 
 IR images were taken at the end of each layer with the original equipment manufacturer 
supplied IR camera. This camera used a prime lens with a focal length of 350 mm and an infrared-
radiation sensor with a bit depth of 8 bits. The images taken were 5120 x 5120 pixels with a 
resolved pixel size of 70 µm within the field of view. Images were corrected for distortion using 
the pinhole camera model program in MATLAB 2022a. After this preprocessing, each image was 
cropped to a single sample, resulting in stacks of images of size 137 x 137 pixels (Figure 3a). Next, 
one of 4 image filters were applied: no filter, median filter, gaussian filter, or anisotropic diffusion 
filter. Then, one of 5 gradient determination methods were applied: Sobel, Prewitt, Intermediate, 
Central, or Roberts. This produced a set of gradient images (Figure 3b). However, since some of 
the gradient methods produced small gradients, each gradient image was rescaled to make the 
gradient values spanned the range of 0 to 1 (Figure 3c). These rescaled gradient images were then 
binarized with a threshold value determined via the Otsu method [37] (Figure 3d). Since the 
gradients only found the boundaries of the pores, an image filling algorithm was performed to 
capture the entirety of the pores (Figure 3e). Finally, the binarized image stacks were resized to 
match the registered XCT image stack and aligned using a marker pixel for pixel-to-pixel 
comparison. All image processing was performed in MATLAB 2022a. 
 

 
Figure 3: Workflow layout with a) original cropped image, b) gradient-applied image, c) gradient 
image rescaled to be between 0 and 1, d) binarized gradient image, e) binarized imaged with 
pores filled in, and f) filled image overlaying original image 

 
2.4 XCT to IR Comparison 
 Once both image stacks were processed, a set of comparison images was generated via 
subtracting the pixel values of the IR images from 2 times the pixel values of the XCT images (2 
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* XCT - IR). Then, each value was given a different red-blue-green (RGB) color value based on 
the classification accuracy value: green for True Positive (TP), grey for True Negative (TN), red 
for False Negative (FN), and blue for False Positive (FP). Pixels outside the part boundary 
(determined by being outside the Solid Part boundaries in the Weka-classified images) were 
colored black to distinguish from the actual TN pixels. 
 

 
Figure 4: Example of Colorized Comparison Image 

 
3. Results 

 
****************************************************************************** 
3.1 Manufacturing and XCT Scanning 
 All samples were manufactured successfully, and the chosen FO values created consistent 
and significantly different levels of porosity. This was observed in both the IR images, such as 
those in Figure 1, and the CT images, such as those in Figure 5. Additionally, as Figure 6 shows, 
the registration process successfully aligned the two datasets. It should be noted that the pores in 
the IR images are significantly larger than the pores in the XCT images. This was due to two 
factors. First, the IR images were taken with a larger resolution (70 µm compared to the 12 µm of 
the XCT images), so the IR images were less precise. Second, since the IR images measure IR 
radiation and the images were taken while the pores were still hot, some heat likely spread out to 
the surrounding areas. This means those surrounding areas, where pores did not form, still gave 
off additional IR radiation and made the pores appear larger in the IR images. These two factors 
mean that pixel-to-pixel correlations appeared less accurate, as the IR pores were larger and 
oversized compared to the ground-truth reference. 
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Figure 5: Raw XCT images showing varying porosity levels for a) sample A2 (low porosity), b) 
sample B8 (medium porosity), and c) sample C5 (high porosity). d) a zoomed-in view of a pore 
from sample C5. 

 

 
Figure 6: Comparing results of a) registered IR image and b) registered XCT image, with c) IR 
image overlaying XCT image 

 
 As described in Section 2.2, the XCT images were segmented using a 3D Weka 
supervised learning segmentation program. The results of this process are shown in Figure 7. As 
seen in the figure, the model successfully segmented between the 4 different classes and 
accurately represented the porosity. 
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Figure 7: Example of Weka classified XCT Image with a) raw XCT image, b) Weka classified 
image, c) Weka classified image overlaying raw XCT image, and d) zoomed-in overlay 

 
3.2 Gradient – Qualitative 
 Results from applying different gradients can be qualitatively observed in Figure 7. The 
different gradients gave slightly different magnitudes and distributions. First, in the gradient 
images in row a), the Sobel and Prewitt gradient images in a-i) and a-ii), respectively, had 
noticeably less noise than the Intermediate and Roberts gradient images in a-iv) and a-v), 
respectively. This was especially noticeable in regions without pores. Additionally, the Sobel and 
Prewitt gradients produced larger gradients, as shown by the brighter gradient images. Second, the 
Sobel and Prewitt gradients also resulted in smoother histograms, seen in b-i) and b-ii), 
respectively, than the other gradients in b-iii), b-iv), and b-v). These other gradients resulted in 
varying levels of large changes in grayscale counts between neighboring grayscale values, 
resulting in areas of higher threshold sensitivity (where smaller changes in the threshold value 
resulted in classifying larger collections of pixels). However, in most cases, this alone did not 
significantly affect the overall classification, as the binarized images in row c) show. 
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Figure 8: Results of applying gradients to unfiltered image. Rescaled gradients images are shown 
in the first row (a), gradient histograms with threshold in the second (b), and binarized and filled 
images in the third (c). 

 
3.3 Filtering – Qualitative 
 Results from applying different filters can be qualitatively observed in Figure 8. Compared 
to the effects of different gradients seen in Figure 7, the different filters resulted in more significant 
differences than different gradients. First, the median filter resulted in smaller gradient magnitudes. 
This can be observed in the dimmer image in Figure 8a-ii) and the skewed histogram in Figure 8b-
ii). This skewing of gradient magnitudes resulted in the threshold value having a much more 
significant impact than the other filters because changes in the threshold value affected a greater 
percentage of pixels, causing more instances of significant under classification (missing pores). 
Additionally, the threshold values were significantly lower than those of the other filtering 
methods, as the median-filtered images had thresholds close to 0.1 while the other methods had 
thresholds between 0.25 and 0.3. Second, the gaussian filter resulted in a smoother gradient image. 
This also resulted in a more distributed histogram of gradient magnitudes and therefore lowered 
the sensitivity to the threshold value, making classification more accurate in detecting the presence 
of forming pores. Compared to the other filters, the gaussian filter images and histograms looked 
most like the unfiltered images but with slightly greater gradient magnitudes (shown by brighter 
pixels in the gradient image). Finally, the anisotropic filter resulted in the smoothest gradient 
images. This reduced the quantity of noisy pixels while still maintaining the major grayscale value 
changes between solid part and forming pore. Additionally, this resulted in smoother edges of the 
final pores as seen in Figure 8c-iv). However, this did decrease the smooth distribution of 
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magnitudes in the histogram in Figure 8b-iv), resulting in local threshold sensitivities. Contrary to 
the sensitivity seen with the median filter, though, this provided magnitudes that allowed for easier 
classification, as each jump in counts was typically due to different classes (sintered powder, 
melted powder, contour, or forming pore). These effects resulted in some changes in the final 
binarized images in row c). The anisotropic filter resulted in the smoothest pore edges and the least 
noise, and the gaussian filter also resulted in more smooth edges and reduced noise. The median 
filter did reduce noise in some cases, but it also resulted in severe under-classification in other 
cases due to the significant skewing of gradient values. 
 

 
Figure 9: Results from applying filters to Sobel gradient. Gradient images are shown in the first 
row (a), gradient histograms with thresholds in the second row (b), and binarized images in the 
third row (c). 

 
3.4 Gradient – Quantitative 
 To quantitatively evaluate the various combinations of gradients and filters, a G-Mean for 
each image was calculated. Due to the severe imbalance of the positive and negative classes, this 
metric was optimal because it treats each class as separate accuracy percentages (Equations 1-2) 
before combining into a single metric (Equation 3). 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (2) 
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𝐺𝐺 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (3) 
 
 Figure 9 shows all results of the quantitative comparison analysis, grouped together by 
gradient type. The first major observation is the effect of porosity levels (caused by varying FO 
levels). The medium porosity (FO = 65 mA) samples had the highest performance, the high 
porosity (FO = 75 mA) had the second highest performance, and the low porosity (FO = 55 mA) 
had the lowest performance. Additionally, each porosity level different levels of variability, as the 
high porosity samples had similar performance results for all gradients. The medium porosity 
samples followed that trend for the Sobel and Prewitt gradients, but there were some samples that 
had sharp decreases in performance using the median filter with the other 3 gradient types 
(discussed more in Section 3.5). The low porosity samples had more variability between individual 
samples, but the results were still relatively consistent for the Sobel and Prewitt gradient types. 
However, like with the medium porosity samples, the performance varied more with the other 3 
gradient types, especially when used with the median filter. 
 

 
Figure 10: Results of quantitative analysis, grouped together by gradient type. Solid lines show 
results for individual samples, while stars show average for each FO value 

 
 These results are condensed in Figure 10. These results were obtained by taking the average 
(Figure 10a) and standard deviation (Figure 10b) for all images processed with that gradient type 
(all samples, all filters). Here, it is easier to see that Sobel and Prewitt gradients had both higher 
average G-Mean and lower standard deviation values. This increase in performance is inversely 
proportional to porosity levels, as samples with higher porosity had more similar G-Mean values, 
meaning the gradient type had less impact. 
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Figure 11: Plots of a) average G-Mean and b) G-Mean standard deviation for each gradient type 

 
3.5 Filtering – Quantitative 
 All results are once again plotted in Figure 11, this time grouped together by filter type. 
Once again, it should be noted the effect porosity level has on the performance. However, with 
this new grouping, it is clearer the median filter resulted in a significant decrease in performance 
for all low porosity and most medium porosity samples. The unfiltered images had significantly 
less variability than the median filter, but there were still some differences between samples and 
gradient types. However, the gaussian and anisotropic filters resulted in relatively homogeneous 
results. The anisotropic filtering resulted in nearly the same average G-Mean values for all gradient 
types. However, even though the results were the same for each sample, there was a greater 
difference between the different samples’ values, increasing the variance. This behavior is seen 
the most in the low porosity samples and some in the medium porosity. However, like with the 
gradients, the high porosity samples did not see significant impact from different filters. 
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Figure 12: Results of quantitative analysis, grouped together by filter type. Solid lines show results 
for individual samples, while stars show average for each FO value 

 
These observations are confirmed by the condensed plots in Figure 12. The median filter 

resulted in lower averages and higher standard deviations for both the low and medium porosity 
values, while the averages and standard deviations for the unfiltered, gaussian, and anisotropic 
filters were relatively close. Meanwhile, the high porosity samples again saw minimal impact from 
the different filters, having nearly the same average and low standard deviation values. 
 

 
Figure 13: Plots of a) average G-Mean and b) G-Mean standard deviation for each filter type 

4. Discussion 
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****************************************************************************** 
 As previously stated, the porosity levels had the most impact on porosity. This is likely due 
to two main factors. The first is micropores. Due to the high resolution of the XCT scanning, there 
were smaller micropores detected that were only a few pixels in size. Because they were so small, 
it was unlikely that they would appear in the IR images with their much larger pixel size. These 
micropores were present in all samples. However, since the low porosity samples had fewer total 
pores, these micropore pixels consisted of a higher percentage of the total number of pore pixels 
and resulted in a lower sensitivity for these samples. Luckily, many of these pores could be closed 
with a post-processing step, like hot isostatic pressing, so future applications could simply filter 
out these micropores based on post-processing capabilities. The second is pore oversizing. As 
detailed in Section 3.2 and 3.3, the pores in the IR images were larger than those in the XCT scans 
due to different pixel/voxel sizes and heat dissipation. Therefore, when more pores were present, 
a larger percentage of the overall area was covered, capturing most of the pore pixels but also 
incorporating large amounts of surround pixels. This reduced variance by consistently covering 
most of the available area, capturing any micropores and helping detect nearby pores that may 
have been missed. This is the reason many algorithms focus on pore-to-pore detection instead of 
pixel-to-pixel [26], but this can be addressed through additional research into how the pores change 
in shape and size from in-situ IR images to ex-situ XCT scans. 
 
 Gradients, on the other hand, did not play as large of a role. As described in Section 3.4, 
the Sobel and Prewitt gradients had slightly higher averages and lower standard deviations, 
meaning they were slightly more accurate with less variance. This was likely due to these gradients 
using a larger kernel size for calculations, as they both use a 3-by-3 kernel size as opposed to the 
2-by-2 or even 1-by-2 sizes for the other gradient types. With a larger kernel size, more 
neighboring pixels were utilized, making the calculations less dependent on any outlying 
individual pixels that may skew results. This behavior was more pronounced with lower porosity 
levels, especially with the lower overall gradient magnitudes from the median filter, as these 
smaller kernels could not account for the reduced change in grayscale value between pixels. 
Therefore, the gradients with the larger kernel sizes should be used for more accurate and 
consistent. 
 
 Finally, filtering also did not play as large of a role as focus offset. The gaussian and 
anisotropic filters had roughly the same performance as the unfiltered, with very similar average 
and standard deviation G-Mean values. The gaussian filter reduced the number of noisy pixels 
while remaining closest to the unfiltered image appearance, though this would include both good 
and bad features such as rough edges. The anisotropic filter resulted in significantly smoother 
edges and clearer gradients, which at first should seem to lead to better performance. 
Unfortunately, this led to a bit of pore oversizing, bringing the performance back down. The 
median filter, however, did significantly decrease the performance of both the low and medium 
porosity levels, especially with the Central, Intermediate, and Roberts gradients. This result is 
understandable, as median filters are intended to reduce individual pixels that vary drastically from 
the nearby pixels (called salt and pepper noise), but this results in bringing all the pixel values too 
close together, reducing the gradient magnitudes. The gaussian and anisotropic filters, on the other 
hand, are intended to remove noise while maintaining feature edges, which allow the gradient 
magnitudes to remain high enough for easier detection. This is why their performance was close 
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to that of unfiltered images. Therefore, if filtering will be used in future applications, filters like a 
gaussian or anisotropic filter should be used. 
 

5. Conclusion 
 
****************************************************************************** 
 In this work, a gradient-based segmentation process was analyzed for its effectiveness in 
detecting and modeling porosity from in-situ IR images in PBF-EB processes. This process was 
analyzed with 5 different gradient calculations and 4 different prefiltering types, and each 
combination of gradient and prefilter was evaluated using XCT scans as ground-truth verification. 
Some conclusions from the work include: 
 

• Most gradient types had similar effects on porosity detection and modeling. The gradient 
types with 3-by-3 sized kernels, such as the Sobel and Prewitt, tended to perform slightly 
more accurately (larger average) and reliably (smaller variance), but the average 
performance was similar between all 5 gradient types. 

• Gaussian and anisotropic filters had similar performance to the unfiltered, with differences 
being mostly qualitative and did not result in significant increase in performance. The 
median filter, however, resulted in significantly lower performance due to the significant 
grayscale value skewing. 

• Porosity levels and density had the largest effect on overall results. Since the IR images 
were taken with a larger pixel size than the XCT voxel size, the pores appeared larger in 
the IR images. Therefore, higher levels of porosity resulted in a higher false positive count 
and lower overall accuracy. However, higher porosity levels also covered a larger 
proportion of the overall area, resulting lower variance and meaning the detection 
algorithm was more consistent. 

 
 These results provide a worthwhile starting point for machine operators looking to detect 
porosity in in-situ IR images in both research and industry. The image processing 
recommendations can be used either on their own or as part of a larger algorithm detecting a variety 
of defects for either post-build part quality assessment or in-situ closed-loop process control. If 
used on their own, further research should be done comparing the different sizes of the pores in 
the two datasets and determine how different factors (different pixel/voxel sizes, heat dissipation, 
etc.) quantitatively affect detection accuracy. Finally, the scope of this work only included one 
material and layer thickness, which can both affect emissivity, so the effect of different materials 
and layer thicknesses on detection and porosity formation can be studied in further research. 
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