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Abstract 

Powder bed fusion with laser beam for metals (PBF-LB/M) is widely used to produce 

complex parts for lightweight applications. Although there have been many investigations to set 

up an in-situ process monitoring for the PBF-LB/M, cost-intensive quality assurance is essential. 

Acoustic process monitoring is a promising approach due to high data rates with small memory 

requirements with a simple implementation and the possibility to detect subsurface defects. 

However, disturbance factors during the acoustic measurements affect the quality of defect 

detection. In this paper, we present an approach to identify and minimize disturbance factors by 

varying the process boundary conditions such as the reflection behavior of the build chamber while 

monitoring single line experiments. Subsequently the impact of the build chamber reflection on the 

data quality is evaluated by a comparative analysis. This work shows that a careful consideration 

of the boundary conditions plays a crucial role to ensure reliable defect detection. 

Introduction 

Metal Additive Manufacturing (AM) has been used significantly more in various industries 

in recent years due to its potentials of producing highly complex parts. Compared to conventional 

manufacturing processes, the use of additive manufacturing can lead to cost savings, a reduction in 

material waste and greater design freedom [1]. During the PBF-LB/M process parts are build up 

layer by layer using a laser beam to melt metal powder to a dense part. Therefore, each layer 

consists of an appropriate scan path which is defined by the scan strategy and the part geometry. 

The scan path consists of multiple scan vectors which are lined up and stacked during the process 

to manufacture a part.  

Despite its significant potential for the manufacturing industry, process instability and 

inconsistent part quality continue to pose major challenges to the widespread adoption of the 

technology [2]. A variety of defects can occur in AM parts that manifest themselves during the 

process or later in the finished part, resulting in rejects and therefore cost-intensive quality 
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assurance is required [3]. Rejects lead to waste of machining time and of material or the material 

must be recycled within an elaborate process. In both cases, resources are wasted, additional CO2 

is emitted and the economic feasibility of the process is reduced. 

Such defect patterns can be divided into three groups: Microstructural defects, geometric 

defects and process events [3]. As the investigations are carried out based on single lines, this study 

analyzes the class of process events. This class includes events such as the balling effect, melt track 

breaks or contour elevations. (see Figure 1).  

Figure 1: Melt track cracks, marked by red arrows (top); balling with lack of fusion (bottom) 

Monitoring and the ability to detect such process events is essential, as these are often the 

cause of error patterns that occur in the finished part [3]. A continuous melt track with a stable 

geometry is therefore crucial in PBF-LB [4]. The resulting defects in the finished part can be pores, 

cracks or increased surface roughness as shown in Figure 2.  

Figure 2: Defect patten in the final part; low density (top left) vs. high density parts (top right); surface 

roughness (bottom) 

There are currently several approaches for detecting process events, most of them based on 

the use of optical process monitoring systems such as high-speed cameras, photodiodes, 
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pyrometers and optical tomography systems [5]. However, the formation of plume in the process, 

low sampling rates and often large amounts of data lead to distortions, low resolutions and long 

computational processing times. At this point, acoustic process monitoring approaches offer the 

possibility of obtaining much higher resolution data with a comparatively small memory capacity 

requirement and also avoiding distortions caused by process influences such as plume formation.  

In recent years, various studies have demonstrated the potential for defect detection through 

acoustic process monitoring. For example, keyhole pores could be provoked by a specific sample 

design and classified by an support vector machine algorithm with an accuracy up to 97% [6]. The 

specific sample design also enables constant process parameters and thus keeps the controllable 

influencing factors as constant as possible. In addition, the potential for detecting subsurface 

defects using acoustic process monitoring was demonstrated. Therefore M. Seleznev et al (2022) 

detect cracks in the component during the manufacturing process with the help of structure-borne 

sound data collected with an acoustic emission AE-sensor [7]. Approaches for density prediction 

using acoustic process monitoring are also presented in other papers [8,9]. However, the 

controllable influencing factors such as laser power, scanning speed or hatching are often modified, 

which can lead to uncertainties in the correlation between the resulting acoustic signals and the 

underlying process parameters as well as the resulting defects.  

In addition to the controllable influencing factors, there are also many uncontrollable 

influencing factors in acoustic process monitoring. One influencing factor is the reflection behavior 

of the build chamber. Many of the current PBF-LB systems have flat, smooth metallic surfaces on 

the walls of the build chamber. These sound hard surfaces reflect the sound wave with minimum 

damping and thus generate an echo in the build chamber. However, previous works on process 

monitoring using airborne sound have not taken this phenomenon into account. 

Current approaches for acoustic process monitoring in PBF-LB often neglect the 

disturbances present within the build chamber. Environmental factors such as machine vibrations, 

airflow patterns, build chamber reflection and ambient noise can significantly impact signal clarity 

and interpretation [10]. Thus, there is a crucial need to develop robust methodologies for 

identifying and mitigating disturbances in the build chamber. Such efforts will not only improve 

the accuracy and reliability of acoustic monitoring but also enhance overall quality assurance in 

PBF-LB processes, thereby facilitating broader adoption of AM technologies in manufacturing 

industries. 

The work presented below was carried out as part of the ML-S-LeAF project - 

“Development of machine learning algorithms on the basis of virtual sound data for lightweight 

construction for quality assurance in additive manufacturing” - which is funded by the BMWK. 
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Research methodology 

A PBF-LB system from EOS GmbH was used for the investigations. This is the model 

M290 with a chamber volume of 250𝑥250𝑥300 𝑚𝑚 and a 400 W single-mode fiber laser with a 

wavelength of 1060 𝑛𝑚 and a focus diameter of 100 µ𝑚. Gas atomized stainless steel powder 

316L is used for all experiments. The system is equipped with two 1/4” MM 302 measuring 

microphones from Microtech Gefell GmbH for the experiments (see Figure 3, Microphone 1 (M1), 

Microphone 2 (M2)). 

Figure 3: Experimental setup 

These are free-field microphones with a frequency range of 5 𝐻𝑧 𝑡𝑜 100 𝑘𝐻𝑧, a limit sound 

pressure level of 168 𝑑𝐵 and an operating temperature of −25°𝐶 𝑡𝑜 100°𝐶. The sound pressure is 

measured in 𝑃𝑎. The airborne sound data is recorded via a National Instruments measuring system 

with a sampling rate of 600 𝑘𝐻𝑧. In addition, the machine data (x,y position of the laser, 

modulation of the laser) and the data from the Melt Pool Monitoring System (MPM system) from 

EOS GmbH are recorded via the same interface at a sampling rate of 60 𝑘𝐻𝑧 (see Figure 4). 

Figure 4: Overview of data acquisition 
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The machine data is used as a trigger signal to segment and label the sound data according 

to the process. Thereby, the one-dimensional sound data can be localized in two-dimensional space 

and each data point can be assigned a position on the building platform and thus individual scan 

vectors. In pre-processing, the position-dependent time offset of the airborne data due to the speed 

of sound propagation in argon at room temperature of approx. 323 
𝑚

 [11] is taken into account

and corrected by position compensation. 

Single lines are produced as a test series. This reduces the complexity of the process and 

enables a clear assignment of sound data and scan vectors. In addition, spaceholders (area 

exposures with a laser power of 0 𝑊) are produced after each single line in order to avoid inducing 

any process-related excitation during these intermediate times and thus to be able to isolate the 

sound data of each single line (see Figure 5). The figure shows two spectrograms that were 

generated using Short Time Fourier Transformation (STFT) (𝑛𝑝𝑒𝑟𝑠𝑒𝑔 = 512, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 256). 

After the end of the process, increased amplitudes are still detected over a broad frequency band, 

which slowly flatten out over time. This phenomenon is from now on referred to as a tail, whereby 

it is hypothesized that this is partly due to process noise reflected from the building chamber, 

which is referred to below as echo. The left part of the figure shows the spectrogram of two single 

lines produced directly after each other. It is assumed that the signal of the second line is strongly 

influenced by the superimposition of the tail of the previous scanned vector. To minimize this 

influence, the above-mentioned spaceholders are produced between all scan vectors. The resulting 

spectrogram of such an isolated line can be seen in the right part of Figure 5.   

Figure 5: Spectrogram of two consecutive scan vectors (left) and a single scan vector (right)

The aim of this work is to minimize the influencing factors on the recorded signal to be 

able to assign the recorded data to the process sufficiently. Under the assumption that process 

noise causes an echo in the process chamber, it can be assumed that the process noise at the 

beginning of each scan vector influences the data recorded in the following. To investigate and 

minimize this influence, the build chamber is lined up with damping material (see Figure 6).  
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Figure 6: Build camber with microphones and damping material 

100 individual lines with and without damping material were produced in each quadrant of 

the build plate. In addition, 50 individual lines with and 50 without damping material were 

produced, distributed across the entire build plate. All lines are produced on square base bodies 

with an edge length of 10 𝑚𝑚, which are built up in a previous job. This allows the target layer 

height of 60 µ𝑚 to be set reliably and reproducibly. The base bodies have three grooves orthogonal 

to the production direction of the lines (see Figure 7). 

Figure 7: Sketch of the experimental design (left). Microscopic picture of one final specimen with 9 lines 

(right) 

These grooves represent spontaneous variations in layer height during the process and 

induce anomalies in the single lines at predefined points which are similar to regular melt track 

breaks Assuming that the signal of regular, stochastically distributed process events is influenced 

by the echo to the same extent as the signal of the specifically induced anomalies, these anomalies 

are used as a quality criterion for the quantitative evaluation of the influence of the echo. An 

analysis of the recorded data is presented below, which provides information on the qualitative and 

quantitative differences in acoustic process monitoring caused by the use of damping material.  

M2M1

Scan direction
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Results 

After gathering the data, a first indication of the damping material's impact on the process 

camber behavior was observed. Looking at the spectrograms for lines printed with and without 

damping material, it can be obtained that there is a visual difference between these spectrograms. 

This difference is most obvious in the period after the end of production of the lines (see Figure 8). 

Figure 8: Spectrograms for lines without (left) and with damping material (right) 

At this point, the assumption that the tail after the single line in the audio signals is 

influenced by the damping material in the build chamber and that it is mainly the sound waves 

reflected from the process chamber walls is confirmed. To be able to make a statement as to 

whether and to what extent the recorded sound data of a single line is influenced by its own echo, 

only the data recorded between the start and end of the line is evaluated below. 

A significance test and a Principal Component Analysis (PCA) were carried out in order to 

make a basic statement as to whether the sound data of a single line is influenced by its own echo. 

To increase the number of samples for the significance test, the data of each line was divided into 

five time series of equal length. The sound pressure level was then calculated for each of these time 

series and the generated data was used for the significance test. For the PCA, the STFT 

spectrograms (𝑛𝑝𝑒𝑟𝑠𝑒𝑔 = 256, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 128) of each line were analyzed. The results of these 

investigations can be seen in Figure 9 

Figure 9: Results of the significance test (left), results for the PCA (right) 
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Results show that there are two distributions. As part of the significance test, a P value of 

P <  0.001𝑥10−23with a confidence interval of 0.39 − 0.49 𝑑𝐵 can be shown with a significance

level of 𝛼 = 0.001. The two data sets therefore differ significantly. The PCA plot also shows that 

the two data sets differ in two populations based on the first two components which represent about 

38% of the variance in the data. This leads to the conclusion that the data differ qualitatively.  

To quantify the qualitative differences shown above, two approaches are pursued based on 

of the data from one quadrant. On the one hand, an Extra Tree Regressor machine learning classifier 

is built. On the other hand, a data point-based classification is developed using the wavelet 

transform and various methods of time series processing. The pre-processing of the data for the 

machine learning model takes place in two steps. In the first step, the time series data of each line 

is transformed into spectrograms using STFT (same as for PCA) and is then divided into seven 

segments (see Figure 10). 

Figure 10: Segmentation of the STFT spectrograms with an example of a stacked spectrogram of 100 lines 

In the figure, the stacked spectrogram of 100 lines was used as an example to illustrate the 

segmentation. For the evaluation, the segmentation is based on the individual spectrograms. 

Segments 1,3,5 and 7 correspond to good, defect free parts of the single line. Segments 2,4 and 6 

correspond to defective areas. A two-dimensional spectrum is derived for each segment by 

averaging the amplitudes over time. These spectra are used as good and defective labeled data for 

modeling the classifier. A training/test data split of 80/20 is used. Figure 11 shows the results for 

both data sets in the form of confusion matrices. 

Figure 11: Confusion matrices for the results without damping material (left) and with damping material 

(right) 
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There is an improvement in the true-negative rate from 39% without damping material to 83% with 

damping material. The true-negative rate represents the segments correctly identified as defects 

and is therefore referred to as accuracy below, when only the defective class is considered. The 

results thus show that by reducing the echo in the process chamber, defect detection can be 

improved by a factor of 2,1 using acoustic process monitoring.  

As the spectra are also provided with the labels 1-7, the data can also be evaluated with 

regard to the detection of the individual defective segments 2,4 and 6. The results can be seen in 

Figure 12 on the left.  

Figure 12: Accuracy results along the defect position for train/test data (left) and validation data (right) 

The accuracy as a function of the position of the defective segments for the two data sets can be 

seen. Without the use of damping material, the accuracy over the position decreases (red graph), 

whereas the accuracy remains constant with the use of damping material (blue graph). This result 

suggests that the hypothesis “the process noise at the beginning of each scan vector influences the 

data recorded in the following” is correct. The right-hand side of Figure 12 also shows the results 

of the validation data set in light blue and light red. A distinction is made between data that was 

recorded in the same quadrant as the training data and data that was recorded in one of the other 

quadrants. It is clear to see that the performance of the models on the data of a separately produced 

build job is comparably good and shows the same trends. In this case, the deviations in accuracy 

are mainly due to stochastic deviation of comparatively small data sets. 

As part of the second approach, the time series data is transformed into the frequency-time 

domain using wavelet transformation. There, the amplitudes are summed up and averaged in 10 

kHz steps for each frequency band. The resulting two-dimensional signal is then globally 

normalized, derived and applied with a moving mean over the last 500 data points before the data 

of the individual frequency bands are merged again. The processed signal can be seen in light blue 

in Figure 13. 
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Figure 13: Reduction of the processed signal into a binary signal 

The start (purple line) and endpoint (red line) of the grooves directly indicate the start end endpoints 

of an imperfect area in the line. The processed signal is reduced to a binary signal using a threshold 

(dashed line), whereby falling below the threshold represents a defect detection. The threshold was 

developed globally on the data set and optimized regarding the ratio between true negatives and 

true positives. Classification is performed for each data point of each single line. The resulting 

binary signals are then summed up and the result can be seen in Figure 14. 

Figure 14: Results of the second approach without damping material (left) and with damping material 

(right) 

The detected defects are plotted along the number of data points for both data sets. The start and 

end points of the grooves are also marked. The detected defects within a groove area are to be 

interpreted as correctly detected defects and thus formally correspond to the true negatives from 

the previous approach. The derived values are also listed under the term Accuracy. Like the 

previous approach, an improvement by the factor of 2,4 in accuracy from up to 38% without 

damping material to up to 90% with damping material is demonstrated. 

DampingNo damping

Accuracy up to 90%Accuracy up to 38%
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Summary and outlook 

In this work, the example of the build chamber reflection was used to show that a careful 

consideration of the boundary conditions plays a crucial role to ensure reliable defect detection 

with acoustic process monitoring approaches. For this purpose, two free-field microphones were 

sampled at a sampling rate of 600 𝑘𝐻𝑧 to detect sound emissions during the production process. 

Single lines were produced on base bodies with grooves. The grooves were used to introduce 

anomalies into the single lines, which were then used to qualitatively and quantitatively evaluate 

the influence of the build chamber reflection. Using significance tests and principal component 

analyses, it was possible to show qualitatively that the reflections of the process sound have a 

significant influence on the recorded signals and thus their quality. The influence was then 

quantified using two approaches. Both approaches showed comparable results and an increase in 

the defect detection rate by a factor of 2 by using damping material in the chamber. It was also 

shown that the signal is already influenced within a scan vector by the reflection of the own process 

excitation. 

Future research will focus on expanding the evaluation methodology to account for 

additional influencing factors acoustic process monitoring. For this purpose, influence factors such 

as the inert gas flow, the position and orientation of the microphones and the scan direction of the 

lines are specifically varied. After the comprehensive evaluation of the influencing factors, the 

monitoring approach is extended from the consideration of single lines to the consideration of 

exposed surfaces and later to built-up volumes. In addition, the potential to fuse the airborne sound 

data from the microphones with the structure-borne sound data from acoustic emission sensors will 

be investigated to improve the quality of this process monitoring approach.  

Further research in this field will enable process monitoring as a quality assurance tool, 

thereby replacing cost-intensive, downstream quality assurance with process-parallel quality 

assessment. 
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