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Abstract 

Design for additive manufacturing (DfAM) can be used to harness the flexibility inherent 

in additive manufacturing to achieve significant weight reduction. Lattice structures are a highly- 

effective way to achieve substantial weight reductions; multi-lattice structures compound this 

benefit by making use of multiple lattice topologies. While various methodologies have been 

proposed for designing multi-lattice structures, there remains a lack of clarity on how to effectively 

compare these methods. In this work, we investigate the key design criteria for evaluating multi- 

lattice structure design methodologies. Our analysis reveals three recurring design criteria across 

existing literature: 1) lattice connectivity, 2) lattice diversity, and 3) physics-based interpolation of 

lattices. These criteria are discussed within the context of extant research on multi-lattice structure 

design. 

1. Introduction

Additive manufacturing (AM) has infinitely expanded the design horizon by enabling the 

production of designs that were once impossible to manufacture. One of the key developments in 

this space has been the application of lattices, repeating structural elements that can be used to 

reduce weight all while addressing mechanical performance needs [1–3]. Initially, designers used 

what are now called uniform lattices, as they are a single unit cell uniformly patterned throughout 

a structure with consistent unit cell size and density [4]. Despite the many benefits of these simple 

patterns, they are inherently limited to a single unit cell and therefore have limited mechanical 

properties [1,5,6]. As such, designers continued to improve upon uniform lattices by varying the 

density of individual unit cells, which have been coined graded lattices. However, these too are 

plagued by a single unit cell, hampering the ability to address energy absorption [7] and going as 

far as limiting structural connectivity [4]. To address the common inhibitor, researchers have begun 

to develop multi-lattice structures by incorporating multiple unit cells into a single structure [8– 

10]. 

On the surface, multi-lattice structures seem more appealing as they should offer more 

design flexibility to attend to complex loading constraints. However, in reality they pose a 

challenge as they must be designed inversely at the mesoscale to address connectivity and 

concurrently optimized at the macroscale to effectively address structural needs [11]. 

Consequently, designing structures with multiple unit cells has proven to be a complex task, with 

a myriad of methods attempting it through a combination of shape blending [12–16] and 

parameterizations techniques [9,11,17–26]. Due to the many approaches to multi-lattice design, it 

is difficult to effectively compare them during literature review. There is a clear absence of 

comprehensive methodologies for comparing these various design approaches and collectively 

analyzing their limitations. 
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Recognizing this gap, this work aims to establish a framework for systematically evaluating 

and comparing multi-lattice design methods. Through meticulous analysis, we have identified 

recurring limitations within existing approaches, which have informed the development of a 

standardized set of multi-lattice structure design criteria. These criteria will serve as a valuable 

tool for researchers, facilitating a consistent and objective evaluation of multi-lattice design 

methodologies. These criteria are poised to evaluate the multi-lattice structures generated from 

these methods, rather than critiquing every aspect of a design method. Based on our review, we 

propose the following criteria for comparing existing multi-lattice design methods. 

① Lattice Connectivity - maintain connectivity between adjacent unit cells;

② Lattice Diversity - consist of a wide range of unit cell topologies; and

③ Physics-based Interpolation - designed based on the mechanical characteristics of

adjacent unit cells

These design criteria provide a common point of comparison for all the models discussed in the 

current work. The remainder of the paper is organized as follows. Section 2 reviews literature 

relevant to the three proposed criteria. Section 3 demonstrates how these criteria can be used to 

meaningfully differentiate between prominent work in this area. Finally, Section 4 concludes this 

paper with a summary and discussion of future directions. 

2. Relevant Literature Review

Many methods for designing multi-lattice structures identify a key goal that the method 

will address. These goals can be synthesized into design criteria that can be used to describe the 

success of a multi-lattice design method. 

① Lattice Connectivity:

The foremost challenge with developing multi-lattice structures has consistently been how 

to maintain geometric connectivity throughout the structure, otherwise the structural integrity may 

be compromised. While some works directly prioritize lattice connectivity within their design 

method (e.g. [15]), others include discussions on the effects of lattice connectivity (e.g. [11]). 

Figure 1 visualizes how lattice connectivity could be considered between two adjacent unit cells. 

Figure 1: Lattice connectivity example 
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Sanders et al. focuses on the task of lattice connectivity by implementing a shape blending 

method to transition between two lattice faces [15]. The method demonstrates the prevalence of 

developing multi-lattice structures with smooth interfaces in order to ensure manufacturability. 

Wang et al. discuss many methods for addressing connectivity in their work, and ultimately decide 

to develop unit cell families that allow efficient multiscale design by guaranteeing connectivity 

within the family [11]. The task of boundary compatibility motivated the development of their 

design method that utilized the unit cell families to then map desired material properties into a 

structure using topology optimization. By guaranteeing the connectivity of unit cells in the family, 

the topology optimization could freely select unit cells based on their physical properties. This 

work emphasizes the importance of connectivity by prioritizing it throughout their design method. 

Other literature cites the importance of lattice connectivity with respect to their methods. 

A major review of metamaterial design was conducted by Lee et al. [27], which explores existing 

methods for designing lattice structures to achieve unique mechanical properties. Multi-lattice 

structures are a form of metamaterial, as they involve the intricate design of mesostructures to 

achieve complex mechanical properties. This review considers unit cell compatibility as 

representative of their ability to possess geometric and physical similarity. Geometric 

compatibility is consistently discussed with respect to the design methods and often noted as a 

limitation. Kang et al. explored developing multi-lattice structures using two types of strut-based 

lattices, however they noted that the interfaces within these lattices controlled the fracture location 

[9]. They concluded that the poor connectivity between the unit cells simultaneously caused the 

concentration of stresses and weakened the structure. 

Overall, many works either seek to solve lattice connectivity problems directly or have 

cited these as a primary issue within their multi-lattice structures, which supports incorporating 

this as a design criterion. 

② Lattice Diversity:

Given that the goal of multi-lattice structures is to improve the ability of lattices to address 

complex loading conditions, it is imperative that design methods are able to design using a plethora 

of different lattices in order to offer a diverse range of mechanical properties. The importance of 

lattice diversity is emphasized by works dedicated to improving the diversity of lattice datasets in 

addition to those introducing it as a task during multi-lattice design. Figure 2 demonstrates the 

diversity possible even when limited to 2-dimensional lattices. 

Figure 2: Lattice diversity example 
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Wang et al. provide a thorough discussion on the importance of unit cell diversity and its 

role in effective multiscale design [11]. Their work notes that in order to address connectivity, a 

large dataset is necessary to increase the likelihood of lattice compatibility. Larger datasets provide 

more options for achieving the same mechanical properties while ensuring geometric 

compatibility. Additionally, the diversity of the dataset offers better chances of convergence of the 

optimization as it is more likely to find local minima. 

Work by Plocher et al. evaluates the performance of graded lattice structures relative to 

their uniform counterparts, and the key finding was that the type of lattice had a significant impact 

on the energy absorption abilities of the lattices [2]. This finding suggests that in order to address 

complex loading conditions, a wide range of lattices will be necessary to design optimal structures, 

especially in energy absorption scenarios. 

③ Physics-based Interpolation of Lattice Properties:

The similarity of properties between adjacent unit cells is another major factor of multi- 

lattice design to consider, as geometric connectivity alone does not guarantee that loads will be 

distributed effectively. Figure 3 demonstrates how the loading of two adjacent lattices could be 

poorly distributed if their physical characteristics are not considered. 

Figure 3: Physical compatibility example 

Initially, many works applied density-based topology optimization which proved effective 

in the development of functionally graded lattice structures. For example, Kang et al. utilized a 

density mapping approach to multi-lattice design using two lattice types and mapping them within 

a structure [9]. Although the approach demonstrated the benefits of multi-lattice structures, they 

recognized that density mapping did not necessarily optimize based on physical properties and 

suggested that future work should incorporate physics into the optimization scheme. 

Wang et al. demonstrate the importance of interpolating physical properties in the latent 

space by applying topology optimization to organize lattices based on the similarity of their 

physical characteristics, specifically elasticity tensor data [11]. They do this through the 

development of unit cell families that have graded physical properties to offer a wide range of 

properties that can simultaneously reduce stress concentrations. As discussed with respect to 

design criteria ①, a major review of metamaterial design was conducted by Lee et al. [27], which 
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explores existing methods for designing lattice structures to achieve unique mechanical properties. 

This review considers unit cell compatibility as representative of their ability to possess geometric 

and physical similarity. Physical compatibility is mentioned throughout the analysis of the design 

methods and often serves as a limitation. 

Overall, this literature highlights the importance of physical compatibility of unit cells 

within multi-lattice structures throughout the works reviewed, clearly indicating that this is a 

design criterion that cannot be overlooked. Although there are many different physical descriptors 

of lattices, it is evident that physics needs to be considered within multi-lattice design. 

3. Application of Criteria

This section summarizes several prominent works and demonstrates how the design criteria 

are applied based on the multi-lattice structures produced from their corresponding methods. To 

further categorize the methods, we use design criteria ① to divide the methods based on how they 

ensure unit cell connectivity. A concise summary of the works based on their ability to address the 

design criteria can be found in Table 1. The key factor that differentiates the methods is how they 

address design criteria ① (lattice connectivity), by either shape blending or parameterization. 

Some methods embrace this constraint directly through shape blending [12–16], which directly 

interpolates between two geometries to connect them. Alternatively, other methods utilize unit cell 

parameterizations to interpolate over a series of unit cells to create a transition region between two 

target unit cells [9,11,17–26]. Of these, some methods are defined parameterizations (meaning that 

the interpolated unit cells adhere to known mathematical relationships) while others are learned 

parameterizations (meaning that the interpolated unit cells are generated by machine learning 

algorithms). 

In general, the advantage of using a parameterization is the ability to easily incorporate the 

method into a topology optimization which inherently addresses design criteria ③, whereas shape 

blending guarantees design criteria ①. Each of these approaches is discussed in greater detail in 

the following sections. 
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Table 1: Example Evaluation Multi-lattice Design Methods 

Methods Literature Design Criteria ① Design Criteria ② Design Criteria ③ 

Shape Blending 

[15] Satisfied 
Limited to unit cells composed of 

struts, bars or plates 

Does not consider physical 

properties. 

[14] Satisfied 

Satisfied, but requires blending 

between every shape to be 
included in the structure. 

Identifies desirable shapes in a 

structure, but the blending region 
properties cannot be controlled. 

[13] Satisfied 
Limited to equation-based 

lattices. 

Does not consider physical 

properties. 

Defined 

Parameterization 

[9] Inherently connected boundaries. Limited to strut-based lattices. 

Used density-based topology 

optimization, which does not 

consider physical properties. 

[23] Inherently connected boundaries. Limited to strut-based lattices. 

Used density-based topology 

optimization, which does not 

consider physical properties. 

[26] Inherently connected boundaries. Limited to strut-based lattices. 

Satisfied, used density-based 

topology optimization, but 

optimized strut thickness 
distribution. 

Learned 

Parameterization 

[11] 

Connectivity is not guaranteed 

since lattices are selected based 

on their elasticity tensors. 

Satisfied, but limited to the 

training dataset. 
Satisfied 

Satisfied, but unit cells classes are 

used to guarantee connectivity. 
Limited to unit cell families. 

[17] Inherently connected boundaries. Limited to strut-based lattices. Satisfied 

[20] 

Optimization does not guarantee 

connectivity. 
Limited to equation-based 

lattices. 

Satisfied 

Satisfied, but applied a filter to 

blend the boundaries. 

Satisfied, shape blending reduces 

the design intent of the original 

mechanical properties. 

[19] Satisfied Limited to unit cell classes. Satisfied 
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Shape Blending: 

Shape blending uses the geometry of adjacent unit cells to create a direct interpolation 

between them in order to guarantee their connectivity, design criteria ① [12–16]. This section will 

review works that have applied shape blending for developing multi-lattice structures with respect 

to their ability to address the previously defined design criteria. Sanders et al. developed a shape 

blending approach that creates an interpolated unit cell using signed distance fields [15]. However, 

it only operates on unit cells composed of struts, bars or plates, which limits it to only ensuring 

lattice connectivity, design criteria ①. Other works have implemented shape blending for 

equation-based unit cells, but again can only ensure connectivity, design criteria ① [12,13]. 

Another shape blending method developed by Chan et al. demonstrates the ability to blend 

over a diverse range of geometries [14], design criteria ① and ②. However, their shape blending 

method does not control the distribution of physical properties throughout the multi-lattice 

structure. Conversely, a method by Yoo et al. can maintain lattice connectivity and specify physical 

properties concurrently, design criteria ① and ③, but is also restricted to equation-based unit 

cells [16]. Additionally, many topology optimization methods for developing multi-lattice 

structures rely on the cubic assumption to reduce the complexity of the elasticity tensor data by 

assuming the unit cell is symmetric about all three dimensions [13]. Therefore, shape blending 

methods are not ideal as they nullify this assumption which increases the complexity during finite 

element analysis. 

Shape blending methods inherently ensure lattice connectivity, design criteria ①, and have 

demonstrated the ability to be applied over diverse datasets, design criteria ②, but they are limited 

by the ability to simultaneously ensure desirable mechanical properties over diverse datasets. This 

supports the use of shape blending methods in design cases where mechanical properties are not a 

functional requirement of the design. Additionally, shape blending is often a method where 

computational costs increase exponentially as the number of lattices in the dataset increases. These 

costs can be due to the number of blending regions to be developed between each pair of unit cells, 

or due to the increased complexity of finite element analysis caused by the development of 

asymmetric structures. This motivates the use of methods that transition between unit cells using 

a series of cells to develop a lattice transition region. 

Defined Parameterizations: 

Defined parameterizations consist of several methods of addressing connectivity, including 

designing interpolation regions of multiple unit cells to achieve a smooth transition or defining 

inherently boundary compatible datasets [9,23–26]. Once a dataset of unit cells is parameterized, 

then a method for organizing the unit cells is necessary to develop multi-lattice structures. As such, 

the limiting factor of the defined parameterization method then becomes the method of 

optimization, as it determines how the unit cells are distributed throughout the structure. 
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There are many multi-lattice design methods that parameterize strut-based lattices in order 

to organize unit cells based on density [9,23–25]. However, defined parameterizations only work 

for some unit cell types and is not generalizable over large datasets, so they cannot address design 

criteria ②. Additionally, these methods often rely on developing datasets with inherently 

compatible boundaries, so they are not addressing the challenge of connectivity, design criteria 

①. Many defined parameterization multi-lattice design methods utilize density-based topology

optimization as it can be used to easily represent unit cells based on their density. However, Kang

et al. noted that density-based topology optimization does not truly organize unit cells based on

their physical characteristics rather it serves as a cheaper unit cell representations for optimization

[9]. As such, many defined parameterizations are unable to actually address design criteria ③.

There are some works that implement modified density-based topology optimization. For 

example, Liu et al. also optimize using a density-based topology optimization, but they modify the 

thickness of the struts which serves to better address the physical needs of the structure, design 

criteria ③ [26]. 

Generally, models that use a defined parameterization are limited unit cells that have 

inherently compatible boundaries, design criteria ①, and a reduced dimensional form, which 

limits their data diversity, design criteria ②. This motivates the use of learned parameterizations, 

which incorporate a wide range of unit cell topologies using a large dataset. Regardless, these 

parameterizations offer a low dimensional representation of unit cells that is easily incorporated 

into topology optimization techniques. 

Learned Parameterizations: 

Learned parameterizations develop a low dimensional representation of data, often using 

machine learning to implement data reduction methodologies. Like defined parameterizations, 

learned parameterizations attempt to address the connectivity criteria by using a progressive series 

of unit cells organized through topology optimization [11,17–22]. 

A technique using the latent-variable gaussian process can generate new unit cell sets using 

a learned latent space [17,18]. However, the latent-variable gaussian process is only compatible 

with strut-based datasets which enable the development of property continuous structures, thereby 

only addressing design criteria ③. An extension of this uses Laplace-Beltrami spectrum to reduce 

the data dimensionality of lattices using neural network, which can develop new unit cells [19]. 

Traveling through this latent space maintains lattice connectivity by establishing classes of unit 

cells which can then be organized based on their physical properties. These classes restrict the 

diversity of unit cells that can exist in a multi-lattice structure, which means this method can only 

address design criteria ① and ③. 

Wang et al. developed a learned parameterization that uses an inverse homogenization 

generative adversarial network to generate an optimized structure by mapping unit cells that meet 
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the mechanical properties defined by the topology optimization scheme [20]. This model uses 

lattice representations that have low-dimensional formats, in this case equation-based lattices; 

therefore it cannot be applied over extremely diverse data. The model generates a structure that 

directly addresses design criteria ③, but it does not guarantee connectivity. Therefore, a shape 

blending operation is required to ensure connectivity in the structure, design criteria ①, which 

forfeits some of the mechanical design intent, design criteria ③. 

Variational autoencoders (VAEs) are the only dimensionality reduction method that has 

been able to nearly address all the design criteria of multi-lattice design [11,21,22,28,29]. Wang et 

al. demonstrate the ability of VAEs to develop a latent space of unit cells, which can be used to 

generate classes of geometry compatible unit cells [11]. The classes of unit cells ensure 

connectivity while optimized based on their physical properties through topology optimization, 

design criteria ① and ③, but significantly reduce the overall diversity in the structure. To combat 

this, they implemented a method to select unit cells from the training data in the entire latent space 

based on their elasticity tensors, design criteria ② and ③, but similar elasticity tensors do not 

guarantee connectivity. Therefore, this approach directly addresses design criteria ③, but only 

partially addresses design criteria ① and ② depending on which technique they use. 

In general, multi-lattice structures designed using learned parameterizations suffer from 

the difficulty of jointly maintaining connectivity and managing data diversity, design criteria ① 
and ②. However, they are easily combined with topology optimization, similar to defined 

parameterizations, which means they can directly organize lattices based on their physical 

similarity, design criteria ③. 

4. Conclusion

Multi-lattice structures enable the design of lightweight structures using multiple lattice 

topologies to address complex design requirements. However, multi-lattice structures pose a 

complex multiscale design challenge which has generated a highly-varied range of methodologies 

that cannot be easily compared. In this work, we proposed a set of design criteria that can be used 

for categorizing multi-lattice design methodologies based on the structures rendered. These criteria 

represent thematic elements throughout multi-lattice design literature that can be universally 

applied to most multi-lattice design methodology: 

① Lattice Connectivity - maintain connectivity between adjacent unit cells;

② Lattice Diversity - consist of a wide range of unit cell topologies; and

③ Physics-based Interpolation - designed based on the mechanical characteristics of

adjacent unit cells

The application of these design criteria demonstrates common trends in the abilities of 

multi-lattice design methods. For example, methods typically address design criteria ① through 

shape blending, defined parameterizations, or learned parameterizations. Within these categories, 

there are clear trends in the limitations of each method, as the way lattice connectivity is addressed 
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will dictate restrictions on the other design criteria. Shape blending methods were consistently able 

to address design criteria ①, and sometimes design criteria ②, but forfeited the ability to choose 

mechanical properties of the lattices. Therefore, shape blending methods serve to benefit 

applications that do not depend on mechanical functionality. Defined parameterizations often faced 

the opposite problem, they could often only address design criteria ③, as they were limited to 

lattices that can be defined using variables and often relied on geometrically compatible lattice 

types. These traits make defined parameterizations ideal in cases where loading needs to be 

considered, but addressing complex loading conditions will be challenging due to limited lattice 

datasets. Learned parameterizations demonstrated the most flexibility, as they can be applied to a 

large dataset of lattices, design criteria ②, then the problem becomes how to navigate these latent 

spaces in order to maintain connectivity and encourage compatible physical properties among 

lattices. As such, learned parameterizations serve to offer the most flexibility while offering lattice 

diversity. 

With these design criteria in mind, there are still other design elements to consider when 

evaluating a multi-lattice structure. Future work should work to develop a clear set of physical 

properties that need to be evaluated to determine physical compatibility, as there are many 

properties that describe an individual unit cell. Additionally, there is a lack of established 

quantitative evaluations of both physical and geometric compatibility within multi-lattice 

structures, which could help precisely compare existing methods. 
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