
Dense

Rigid

Sparse

Flexible

(a) (b) (c)
25 mm

An Interpolative Slicing Algorithm for Continuously Graded Stiffness in Viscous
Thread Printed Foams

MASA NAKURA∗, VIVEK SARKAR∗, and DANIEL REVIER, University of Washington, USA
BRETT EMERY and JEFFREY I. LIPTON†, Northeastern University, USA

Fig. 1. A three-part illustration of our method for creating multiple stiffness foams using viscous thread instability printing (VTP). (a) A screenshot of a 3D
model in the GUI of our application. (b) The corresponding printing tool path for the model, colored by the amount of material to be dispensed. (c) A
photograph of the final printed structure, demonstrating the successful realization of a graded elastic structure.

Foams, essential for applications from car seats to thermal insulation, are limited by traditional manufacturing techniques that struggle to
produce graded stiffness, a key feature for enhanced functionality. Here, we introduce a novel slicing algorithm for producing
heterogeneous foams through viscous thread printing (VTP). Our slicer generates a single, global toolpath for the entire foam volume while
modulating the viscous thread’s self-interactions along this path to program stiffness. The slicer integrates multiple meshes into a unified print
space and interpolates the print speed and height based on specified mesh parameters to program the desired stiffness variations. Using both
qualitative samples and quantitative compression tests, we demonstrate that our slicer can (1) generate foam stiffnesses spanning an order of
magnitude, (2) achieve millimeter precision in stiffness control, and (3) continuously vary stiffness between regions of constant stiffness
using arbitrary functional forms.

Additional Key Words and Phrases: foams, slicers, 3d printing, geometry

∗Both authors contributed equally to this research.
†Corresponding author.

Authors’ addresses: Masa Nakura, mnakura@cs.washington.edu; Vivek Sarkar, viveksar@uw.edu; Daniel Revier, drevier@uw.edu, University of Washington,
Seattle, WA, USA; Brett Emery, emery.b@northeastern.edu; Jeffrey I. Lipton, j.lipton@northeastern.edu, Northeastern University, Boston, MA, USA.

© 2024

1830

 Solid Freeform Fabrication 2024: Proceedings of the 35th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

 Reviewed Paper

https://orcid.org/0009-0000-6210-1702
https://orcid.org/0009-0000-4120-8973
https://orcid.org/0000-0001-6246-7819
https://orcid.org/0009-0000-6210-1702
mailto:mnakura@cs.washington.edu
https://orcid.org/0009-0000-4120-8973
mailto:viveksar@uw.edu
https://orcid.org/0000-0001-6246-7819
mailto:drevier@uw.edu
mailto:emery.b@northeastern.edu
mailto:j.lipton@northeastern.edu

1831

1 INTRODUCTION

Foams are ubiquitous in everyday life with applications in insulation, padding[8], filtration[6] and more[20] and derive their
material properties from the interaction of a microstructure and the properties of the base material[1]. In traditional foam
manufacturing, the microstructure is produced from the interactions of gases with liquid materials that solidify to form
stochastic structures[1]. When done in bulk, this produces a structure whose material properties homogenize relatively
quickly and can be varied substantially. However bulk foams can only be composed through lamination which creates the
possibility for stress concentrations[20], whereas the ideal would incorporate continuous and gradual transitions between
regions.

Here we show a method of creating smooth and continuous 3D printed foams with spatially controlled material
properties. We achieved this by developing a custom printing method and slicer that is able to generate unique foam
microstructures and smoothly transition between them. This allows us to make controllable gradients of different
functions such as linear or logarithmic transitions between regions. The resulting system uses common, desktop 3D
printing technology and material sets (e.g., thermoplastic polyurethane or TPU) and can vary from standard lattice infills
into coiled microstructures to provide a transition between stochastic and ordered lattice frameworks. We use this new slicer to
show how to produce regions of decreased stiffness to make living hinges, custom orthotics, and graded mechanical
properties in objects orders of magnitude larger than cell size. The main contributions of this work are:

• A method for creating multiple stiffness foams using viscous thread instability printing (VTP).
• An algorithmic slicing approach that produces multi-stiffness foams from a single tool path.
• An example of direct spatial control of stiffness using VTP for joints, padding and controlling material properties.

2 RELATED WORK

2.1 Explicitly Defined 3D Printed Foams

The production of foams in additive manufacturing requires either direct extrusion of a pre-foamed microstructure [3, 14,
19], or the production of a network of materials and voids. These voids can be explicitly created as geometric features
or can be implicitly created by the printing process. Direct foam extrusion has had the widest adoption with applications in
construction for the production for casting forms and insulation [3].

The creation of intricate cellular structures through traditional 3D printing requires an explicit and detailed definition of
geometry. [11] delves into the use of resin-based printing to fabricate open-cell foams with graded material stiffness. The
authors employ a computational method based on a Voronoi cell structure to generate foams with spatially dependent
elastic behavior. They construct a network of beams along the Voronoi cells’ boundaries, using cell shape and size to
influence local stiffness. The system can be used to produce anisotropic stiffnesses in the material [12]. Their method
successfully yields significant elastic differences between areas of prescribed stiffness, achieving a varied elastic stiffness on the
order of magnitude from 0.5 to 2.5 MPa. While it is feasible to design and print such structures, the method demands a
machine resolution significantly finer than the cell size to achieve the desired homogenized effect. This requirement
inherently limits the scale of structures that can be produced.

In another approach, [22] introduces a technique for printing graded foams by dispensing liquid shell-gas droplets and
photopolymerizing the shell. They create both open- and closed-cell foams by using either oxygen or nitrogen as the gas.
They also achieve graded material properties by altering the cell shape and size. However, their technique demands the use of
high-precision printing techniques. The machine stage must be fine enough to produce the bubbles, which form on the order of
hundreds of microns. Furthermore, the authors note that the printing speed and dispensing

.

Fig. 2. The VTP printing process. We see that a higher 𝑉𝑉 ∗ results in less dense coiling. (a) VTP printing in action, with all associated variables labeled. (b) A
line of coiling going from a low 𝑉𝑉 ∗ to a high one. (c) The graph of the changing 𝑉𝑉 ∗. (d) The graph of the coil wavelength.

pressure affect the filament width and shape, indicating the need for precise control. They are able to produce varied elastic
stiffness of the order of magnitude from 10 to 400 kPa.

All of these methods underscore the need for high-resolution printers to achieve the desired homogenization effect,
limiting their application to small-scale structures. The computational complexity of generating the explicit structure further
exacerbates this limitation. In contrast, our approach allows for the definition of a coarse toolpath, akin to a traditional 3D
printing infill, and leverages the physics of Viscous Thread Printing (VTP) to implicitly generate fine cellular structure.
This distinction underscores the novelty and potential advantages of our method, particularly in terms of scalability.

2.2 Viscous Thread Instability and Printing

Viscous thread instability (VTI) is a well-characterized phenomenon that has intrigued scientists for over a century [2, 16–
18, 21]. VTI, which occurs when a viscous fluid is extruded at steady-state from a height much larger than the nozzle it is
leaving, is governed by the dimensionless parameters 𝑉𝑉 ∗ (dimensionless speed) and 𝐻𝐻 ∗ (dimensionless height). These parameters
are defined as follows:

𝑉𝑉 ∗ =
𝐹𝐹

𝐶𝐶
𝐻𝐻 ∗ =

𝐻𝐻

𝛼𝛼𝛼𝛼
where 𝐹𝐹 is the nozzle’s translation speed, 𝐶𝐶 is the speed of the material as it leaves the nozzle, 𝐻𝐻 is the nozzle’s print
height, 𝛼𝛼 is the material and process dependent die swell constant, and 𝐷𝐷 is the nozzle diameter [23]. These variables are
illustrated in Figure 2. The coil behavior changes as 𝑉𝑉 ∗ and 𝐻𝐻 ∗ are modified, with the coil behavior having an
intertwined effect from both. For example, increasing 𝑉𝑉 ∗ leads to fewer coils per unit length, while an increasing 𝐻𝐻 ∗ leads to
larger.

While VTI in one dimension is a well-characterized phenomenon[4, 13], the study of what happens when multiple
threads are layered is still an active area of research. The pioneering work by [10] demonstrated the use of VTI to
produce foams with tunable stiffness. Viscous thread instability printing (VTP) is a foam 3D printing process, which relies
on the instability of a viscous thread hitting a moving surface, buckling and weaving to create a self-intersecting

1832

1833

U

(a) (b) (c)

Fig. 3. 2D overview of point interpolation. (a) Ω𝑗𝑗 and 𝜋𝜋 𝑗𝑗 are identified for query points 𝑝𝑝𝛼𝛼 and 𝑝𝑝𝛽𝛽 . (b) Relevant intersection region is determined by
comparing 𝐷𝐷𝑖𝑖 to 𝐷𝐷𝑇𝑇 . 𝑝𝑝𝛽𝛽 is contained in the intersection region, while 𝑝𝑝𝛼𝛼 is not. (c) Finally, 𝑝𝑝𝛽𝛽 is assigned 𝜋𝜋𝑖𝑖 using the weighting function from Appendix
A, while 𝑝𝑝𝛽𝛽 is assigned 𝜋𝜋 1.

pattern. This self-interaction produces cells that are on the same size scale as the print process. Because it relies on viscous
extrusion, it is compatible with a wide range of materials including glass[4], corn dough[9], silicone[10], TPUs and nylon[5].
The authors focused on modifying 𝑉𝑉 ∗ and 𝐻𝐻 ∗ to produce alternating loops and translating coils, which produce the greatest
amount of interconnectedness between strands.

More recent efforts have been made to characterize the stiffness of VTP foams as a function of density, resulting in
some understanding of homogeneous properties[5]. In this case, the authors focused on modifying 𝑉𝑉 ∗ and 𝐻𝐻 ∗ to produce
different sizes of alternating and translating coils. The authors successfully manufactured homogenized parts that result in a
cellular structures that follow the well-established scaling laws of cellular materials. Until now there has not been a method of
producing graded VTP foams. Expanding on this previous work, our method bridges this gap and allows for continuous,
single-print VTP parts that can obtain gradients throughout the structure.

3 VISCOUS THREAD PRINTED FOAM GENERATION

In order to generate spatially varying foams, we assign a 𝑉𝑉 ∗/𝐻𝐻∗ pair, 𝜋𝜋 = {𝑉𝑉 ∗, 𝐻𝐻 ∗}, to each point inside the 3D model
space. To do this, the user must divide the domain into a set of non-overlapping sub-domains (Ω𝑗𝑗 ∈ M) that share part of their
boundary with another domain. Each mesh has a prescribed 𝜋𝜋 𝑗𝑗 , and we interpolate the region surrounding their shared
boundaries to find the specific 𝜋𝜋𝑖𝑖 values at a given point 𝑥𝑥𝑖𝑖 . Note, we use a superscript/subscript distinction to denote the
difference between mesh-wise and point-wise quantities, where superscript corresponds to meshes and subscript corresponds
to points. We then use a traditional slicer library (libslic3r) [15] to generate the single toolpath and feed it into our own
algorithm to associate all points in the toolpath with a V*/H* pair. We can then modify the toolpath provided by libslic3r
to create one that will produce the desired VTP foam based on user parameters.

3.1 Interpolating 𝑉𝑉 ∗/𝐻𝐻∗

Viscous Thread Printing (VTP) operates as a constant extrusion process, requiring a single, uninterrupted tool path
to fill the entirety of Ω¯ . To do this we implement a few design constraints: 1) meshes must be non-overlapping but share
a boundary with at least one other mesh and 2) meshes can share a boundary with at most one other mesh. An
implication of these two constraints is that the union of all meshes, denoted as Ω¯ = M Ω𝑗𝑗 , must form a single,
continuous domain. We then slice Ω¯ in a traditional manner and return a single tool path across the unioned domain.
Finally, we refine the tool path into smaller segments and query points along the tool path using our interpolation

.

𝑇𝑇


0 𝑥𝑥 ≤

−
1

𝐷𝐷

scheme to determine the 𝜋𝜋𝑖𝑖 at each point. The end result is a 3D-printable file, called GCode, with extrusion values that
match the continuous space of graded 𝑉𝑉 ∗/𝐻𝐻∗ values.

3.1.1 Mesh Union and Intersections. The Ω𝑗𝑗 are defined to be non-overlapping with a shared boundary. This is done to have
a clearly defined surface inside of Ω ̄ that will serve as the mid-point of our 𝑉𝑉 ∗/𝐻𝐻∗ interpolation scheme. In theory, touching
and non-overlapping domains will have a continuous and void free union; however, the triangular meshes common in 3D
printing introduce floating point error which may be enough to introduce void artifacts on the interior of a unioned mesh.
Thus, we expand all of the submesh faces along their normal by a small amount 𝜖𝜖 (on the order of 10−6) to ensure some
overlap, allowing us to robustly determine Ω ̄through an algorithm outlined below in algorithm 1. The mesh intersections are
computed in a similar manner via first augmentation and then a mesh boolean intersection operation. The augmentation by
small 𝜖𝜖 ensures that meshes will overlap only with their adjacent counterparts and not meshes an appreciable distance away.
Once again, because 𝜖𝜖 is small compared to mesh size the intersection meshes approximate shared boundaries between
meshes well.

3.1.2 Interpolation Scheme. To determine the 𝜋𝜋 for every point along the tool path in Ω¯ we first look at the general case
of interpolation. We first associate a 𝜋𝜋 𝑗𝑗 with each Ω𝑗𝑗 , which define regions of constant 𝑉𝑉 ∗/𝐻𝐻∗. We then query a point 𝑝𝑝𝑖𝑖 ∈
Ω¯ to determine 𝜋𝜋𝑖𝑖 . This is done by first calculating the signed squared distance functions first to each Ω𝑗𝑗 to determine
which mesh 𝑝𝑝𝑖𝑖 belongs to. Because the meshes are assumed to be non-overlapping but have an interfacing boundary we can
guarantee 𝑝𝑝𝑖𝑖 will be uniquely mapped to a single 𝑝𝑝𝑝𝑝 𝑗𝑗 up to the submesh boundary.

We then calculate a signed distance 𝐷𝐷𝑖𝑖 between 𝑝𝑝𝑖𝑖 and each intersection mesh. We cannot use the same squared
distance sign as before, however, because there may be cases where a point is closer to an unshared boundary than a shared
one, which would lead to an inaccurate distance calculation from the intersection. Each intersection is associated
with two submeshes Ω𝑗𝑗 and Ω𝑘𝑘 , a transition length 𝐷𝐷𝑇𝑇 , and a weighting function 𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠) that defines how 𝜋𝜋 varies
within the transition region. A transition region has orientation and is denoted by Ω𝑗𝑗→𝑘𝑘 where the orientation of
𝑗𝑗 → 𝑘𝑘 informs the direction from Ω𝑗𝑗 to Ω𝑘𝑘 . Thus, a point is said to be in a transition region if ∥𝐷𝐷𝑖𝑖 ∥ < 1 , where the

𝐷𝐷𝑇𝑇 2
sign of 𝐷𝐷𝑖𝑖 determines if 𝑝𝑝𝑖𝑖 is in Ω𝑗𝑗 or Ω𝑘𝑘 . Once again, 𝑝𝑝𝑖𝑖 can be uniquely determined to belong to a single transition region
due to the assumption that mesh boundaries may only be shared by one other mesh.

Because the transition region is associated with an orientation between two meshes we can define a mapping
𝑤𝑤 𝑗𝑗→𝑘𝑘 : [−1 , 1] → [0, 1] as a weighting function between Ω𝑗𝑗 to Ω𝑘𝑘 across a length 𝐷𝐷𝑇𝑇 . Specifically, for the points

2 2
inside Ω𝑗𝑗 𝐷𝐷𝑖𝑖 is negative, and for the points in Ω𝑘𝑘 𝐷𝐷𝑖𝑖 is positive. The user may freely choose the direction of interpolation function
across the mesh boundary. More formally,

1
2

𝑤𝑤 (𝑥𝑥) =


𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠) − 1 < 𝑥𝑥 < 1
2 2

1 2 < 𝑥𝑥

where 𝑥𝑥 = 𝐷𝐷𝑖𝑖
𝑇𝑇

and 𝑠𝑠 is a parameter specific to the w



eighting function. We can then determine the VTP parameters by

𝜋𝜋𝑖𝑖 = 𝜋𝜋𝑖𝑖 · (1 − 𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠)) + 𝜋𝜋 𝑗𝑗 · 𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠) (1)

The weighting functions used in this work are provided in Appendix A.

1834

1835

3.2 Implementation

We built a custom VTP slicer program utilizing libslic3r [15] for initial toolpath generation and libigl [7] for the GUI and
some geometry operations, with all other algorithmic implementation details being our own. The VTP slicer is able to import
meshes of multiple formats, assign a 𝑉𝑉 ∗ and 𝐻𝐻 ∗ to each mesh, and define the transitions between these different meshes. The users
are also given an option to view intersection and can select a specific one, which will be highlighted on the GUI. The
transition can be defined in terms of what function it takes on, the direction of that transition, and the length of the transition.
We also are able to define the other miscellania involved in 3D printing such as layer height, line spacing, etc.

As it stands, our slicer is capable of processing parts intended to have multiple densities, as long as the following
constraints hold:

• As discussed in the previous section, the meshes must interface to form a continuous domain, with a mesh
sharing a boundary with at most one other mesh.

• Ω¯ must only produce one polygon when sliced with a z-oriented plane. The reason for this is that introducing
multiple polygons on a single layer would necessitate a discontinuous toolpath or undesired strands outside the
geometry definition.

3.2.1 Mesh Augmentation. As mentioned above, touching and non-overlapping domains should have a continuous and void
free union; however, floating point errors may be enough to introduce undesired artifacts in the unioned mesh. To augment the
mesh and ensure well-formed boolean operations are possible we expand the mesh by a small distance 𝜖𝜖. Since this 𝜖𝜖 is small
(approximately 2-3 orders of magnitude smaller than the mesh itself), we determine our computed Ω¯ approximates the entire
domain well without distorting the original design intent of the shape.

Algorithm 1: Mesh Boolean Operation
Input : Two meshes 𝑀𝑀1 and 𝑀𝑀2, expansion distance 𝜖𝜖, boolean operation 𝐵𝐵
Output : Single mesh 𝑀𝑀3 representing union or intersection

1 𝐹𝐹1,2 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑀𝑀1,2)
2 𝑉𝑉1,2 ← 𝑉𝑉 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀1,2)
3 for 𝑖𝑖 ← 1 to 𝑉𝑉 do
4 𝑠𝑠𝑠𝑠 ← 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑉𝑉 [𝑖𝑖], 𝐹𝐹)
5 𝑉𝑉 [𝑖𝑖] ← 𝑆𝑆ℎ𝑖𝑖 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑠𝑠𝑠𝑠, 𝜖𝜖)
6 end for
7 return 𝐵𝐵 (𝑉𝑉1, 𝐹𝐹1, 𝑉𝑉2, 𝐹𝐹2)

3.2.2 Toolpath Refinement. After we compute the union of all the submeshes, we feed it into libslic3r in order to get a
toolpath that covers the whole mesh. A toolpath in this case is nothing more than a list of segments, which indicate what
path the nozzle of the FDM printer is to follow. We can only vary printer behaviour across different segments, so in order for
changes in 𝑉𝑉 ∗ or 𝐻𝐻 ∗ to be perceivable, we need these segments to be short. The toolpath segments we receive from
libslic3r are rather coarse however, with each segment spanning the entire part, and its endpoints lying on the boundary of Ω ̄.
We therefore run a refinement operation on it so that the toolpath has the necessary resolution. We do this by discretizing each
toolpath segment into multiple segments of a length specified by the user. This gives us a list of small toolpath segments
with which we can associate a 𝑉𝑉 ∗and 𝐻𝐻 ∗. The query point we use to determine the V* and H* of each segment is its end
point, which we feed into our interpolation function.

.

Fig. 4. Two examples of different transition functions affecting 𝑉𝑉 ∗. On the left we have a linear transition while on the right we have a logarithmic transition,
both over 75 mm.

3.2.3 Toolpath Interpolation. To implement the interpolation function (Equation 1), we first find the associated mesh of a
point 𝑝𝑝𝑖𝑖 using the minimum signed distance from 𝑝𝑝𝑖𝑖 to each Ω𝑗𝑗 , denoted as 𝐷𝐷 𝑗𝑗 = minSDF(𝑝𝑝𝑖𝑖, Ω𝑗𝑗), where 𝐷𝐷 𝑗𝑗 < 0 𝑖𝑖 𝑖𝑖
implies 𝑝𝑝𝑖𝑖 ∈ Ω𝑗𝑗 . Similarly, we want to find all 𝐷𝐷𝑖𝑖 , the signed distance from point 𝑝𝑝𝑖𝑖 to an intersection. However, using a
signed distance function will always result in a non-negative distance since the intersections are slim meshes with
virtually no volume, and any points inside the intersection mesh can be assumed to have a distance of zero to its
boundary. For weighting functions with derivative functions symmetric around the y axis, the workaround is quite
straightforward because the direction of the intersection does not matter when applying the interpolation. In this

case, we can fix the direction of the interpolation function by always calculating 𝑤𝑤𝑖𝑖 for 𝑝𝑝𝑖𝑖 ∈ Ω𝑗𝑗 using a positive 𝐷𝐷𝑖𝑖 .
However, for other types of functions such as the logarithm, the orientations of the meshes matter when applying the
interpolation. Therefore, the algorithm must keep track of the directions for each intersections and manually adjust the
signs of 𝐷𝐷𝑖𝑖 based on the direction and the mesh associated with 𝑝𝑝𝑖𝑖 . With 𝐷𝐷𝑖𝑖 and the direction identified, 𝑉𝑉 ∗/𝐻𝐻∗ can
easily be obtained using Equation 1 and the weighting functions defined in Appendix A. When all the points on the
toolpath are characterized, the slicer is ready to translate the V* and H* values into GCode variables.

3.2.4 GCode Generation. Once we have determined the 𝑉𝑉 ∗/𝐻𝐻∗ of each point by inputting it into our algorithm, we can
finalize the position of the toolpath in space and generate the remaining variables needed to fully characterize a the print.
These parameters ultimately are translated into G-code commands that the FDM printer can execute, which we now
describe.

A G-code command G1 instructs the printer to move from its current position (𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) to a new position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) at a
certain speed 𝑓𝑓 , while extruding Δ𝑒𝑒 length of material. In a G-code file this looks like G1 X𝑥𝑥 Y𝑦𝑦 Z𝑧𝑧 EΔ𝑒𝑒 F𝑓𝑓 , where G1

1836

1837

2

Algorithm 2: FindVH
Input : Query Point 𝑝𝑝, List 𝐼𝐼 of intersections, Set Ω of submeshes , List Π of all V*/H* pair 𝜋𝜋
Output : 𝜋𝜋𝑝𝑝

1 // Find Inside Mesh, containing p
2 for 𝑖𝑖 ← 1 to Ω do
3 𝑠𝑠𝑠𝑠𝑠𝑠 ← 𝑆𝑆 (𝑝𝑝, Ω𝑖𝑖)
4 if 𝑠𝑠𝑠𝑠𝑠𝑠 < 0 then
5 𝑖𝑖𝑖𝑖 ← 𝑖𝑖 // Inside Mesh
6 end if
7 end for
8 𝐷𝐷 ← 𝑈𝑈 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑝𝑝, 𝐼𝐼) // Distance to each intersections
9 𝜋𝜋𝑝𝑝 ← Π[𝑖𝑖𝑖𝑖]

10 for 𝑖𝑖 ← 1 to 𝐼𝐼 do
11 𝑑𝑑 ← 𝐷𝐷 [𝑖𝑖]/𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ(𝐼𝐼 [𝑖𝑖]) // Scaled Distance to Intersection
12 if 𝑑𝑑 < 1 then
13 𝑜𝑜𝑜𝑜 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ(𝐼𝐼 [𝑖𝑖], 𝑖𝑖𝑖𝑖) // The non-inside mesh bordering interception
14 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ← (𝑖𝑖𝑖𝑖 == 𝐼𝐼 [𝑖𝑖]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀ℎ)
15 𝜋𝜋𝑝𝑝 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, Π[𝑖𝑖𝑖𝑖], Π[𝑜𝑜𝑜𝑜])
16 end if
17 end for
18 return 𝜋𝜋𝑝𝑝

and the capital letters are character literals, and the lowercase letters represent numerical values for the printer to parse. The 𝑥𝑥 and
𝑦𝑦 positions are determined by the object’s infill toolpath, whereas 𝑧𝑧, 𝑒𝑒 and, 𝑓𝑓 are values to be solved for.

The first value we need is the distance by which we need to raise each point in order to achieve the desired coiling
behaviour. We can calculate this value by using the associated H* of each point, using the following formula, where 𝑑𝑑𝑑𝑑 is the
layer height and 𝐷𝐷𝑁𝑁 is the nozzle diameter:

𝑧𝑧𝑜𝑜 𝑓𝑓 𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛼𝛼𝛼𝛼𝑁𝑁 𝐻𝐻 ∗ − 𝑑𝑑𝑑𝑑

Since libslic3r gives us the toolpath directly on top of each layer with no offset, we simply add 𝑧𝑧𝑜𝑜 𝑓𝑓 𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠 to the current z-
value of each point to get the final position of the nozzle.

The remaining values to generate for each G-code command are Δ𝑒𝑒, the amount of filament extruded in millimeters over
each segment, and 𝑓𝑓 , the speed at which the printer head travels over the segment in millimeters per minute. Using the
V* associated with the point, we can derive these values using the following formulas:

Δ𝑒𝑒 = 𝐿𝐿 𝐴𝐴𝑇𝑇

𝑉𝑉 ∗ 𝐴𝐴𝐹𝐹

𝑓𝑓 = 𝑉𝑉 ∗𝐶𝐶
𝐴𝐴𝐹𝐹

𝐴𝐴𝑇𝑇

where 𝐴𝐴𝑇𝑇 is the cross-sectional area of thread being extruded accounting for die swell, 𝐴𝐴𝐹𝐹 is the cross-sectional area of
filament being fed into the extruder, C is the speed of material leaving the nozzle, and L is the distance between 𝑝𝑝𝑖𝑖 and
𝑝𝑝𝑖𝑖 −1. For 𝑝𝑝0, the previous point selected is printer specific, generally being close to the origin.

.

Fig. 5. A probing the compressive modulus featuring a logarithmic transition between 𝑉𝑉 ∗s.

Once we have these values, we then have all of the information that characterizes the behaviour of the printer, and can write
the G-code that will produce the specified part.

4 GRADED VTP FOAMS

4.1 VTP Foam Characterization and Control

The data gathered from the printed structures provide a quantitative demonstration of our method’s ability to control
the modulus through graded VTP parameters. We performed compression testing of 𝑉𝑉 ∗ transitions along a long,
dogbone-like structure every 5 mm, shown in Figure 5. A linear 𝑉𝑉 ∗ gradient (dashed blue curve) with a transition length of 40
mm was used across the 60 mm neck length as shown in the bottom plot of Figure 6. This represents programming of 𝑉𝑉 ∗ as a
function of position along the axial length of the dogbone. 𝑉𝑉 ∗ values at the ends were 0.15 on the left and 0.4 on the right.
Notably, a linear 𝑉𝑉 ∗ gradient resulted in an exponential decrease of compressive modulus left to right (solid blue curve
and measurements top of Figure 6). We fit this data an exponential curve shown as a solid blue line (𝐸𝐸 (𝑥𝑥) = 4.79𝑒𝑒−3.11𝑥𝑥 ,
𝑅𝑅2 : 0.987).

1838

1839

To further validate our method, we adjusted our approach in response to these findings. We took our findings from
the linear 𝑉𝑉 ∗ modulus measurements and implemented a logarithmic sweep of 𝑉𝑉 ∗ (dashed red curve bottom of Figure 6)
using the fitted parameters from the initial linear 𝑉𝑉 ∗ gradient. Due to measurement error in the exponential fit, the 𝑉𝑉 ∗ values are
discontinuous as the ends of the transition region and are 0.1415 on the left and 0.3795 on the right. Despite this error, the
logarithmic 𝑉𝑉 ∗ successfully achieved a linear decrease in modulus across the length (𝐸𝐸 (𝑥𝑥) = −24.15𝑥𝑥 + 11.47, 𝑅𝑅2 :
0.977) (solid red curve and measurements, top Figure 6), as opposed to the initial exponential decrease from the linear
𝑉𝑉 ∗.

This result, as illustrated in Figure 6, confirms that the modulus of the printed material can be manipulated by
adjustment of the VTP parameters. The data show that our method provides a robust and flexible approach to controlling the
mechanical properties of 3D printed materials.

4.2 Applications

We tested our approach in a variety of applications that use multi-modulus and graded modulus structures, as demon- strated
in Figure 7.

First, we generated a cube with low-modulus living hinges (𝑉𝑉 ∗=0.15 or 0.4, transition length zero), shown in its
unfolded state, and in its folded state, which exemplifies the potential for creating complex, foldable structures. Low-
modulus hinges allow for easy folding and unfolding, which could be beneficial in applications such as soft robotics,
packaging or deployable structures. The ability to print structures with varying stiffness within a single print can
significantly enhance the functionality of these systems. For instance, areas of the structure that need to be rigid can be printed
with a high-modulus material, while areas that need to flex or fold can be printed with a low-modulus material. This could
allow for the creation of deployable structures with complex folding patterns or robots that have shock absorbing
features built into the frame.

The foot orthotic (𝑉𝑉 ∗=0.15-0.4, linear transitions, 10 mm), designed with low modulus in areas of high stresss such as
the ball and heel of the foot, exemplifies the potential to create customized and comfort-enhancing products using our
method. The ability to vary the modulus within a single print allows the creation of personalized cushioning objects that can
provide targeted support. This application has significant implications for the field of orthotics, where custom-fit devices can
greatly improve user comfort and functionality. Beyond orthotics, this method could also be applied to create custom
cushioning for wheelchair seats and sockets for prostheses, improving comfort and reducing the risk of pressure sores or
skin lesions.

The linear and logarithmic transitions between areas of different moduli on the specimens (𝑉𝑉 ∗ from 0.15 to 0.4,
linear/log transitions, 40 mm transition length) demonstrate our method’s ability to create graded structures with
continuous material property transitions. This capability is crucial in applications requiring gradual property transitions, such as
load-bearing structures or components subjected to varying stress conditions. For instance, aerospace and automotive
industries could leverage this for components that need to withstand different pressure, temperature, or impact conditions.
Similarly, in biomedical engineering, graded materials could be useful for designing implants or prosthetics with varying
tissue-mimicking properties.

5 CONCLUSION

In this work, we have introduced a novel slicing algorithm that recognizes the boundaries between multiple meshes and
facilitates gradient transitions between them. Specifically tailored for the viscous thread printing (VTP) process, this slicer is
able to adjust the print height and speed to control the coiling behavior and thereby the foam microstructure,

Dogbone Modulus With Corresponding V* Control
30

25

20

15

10

5

0

0.40

0.35

0.30

0.25

0.20

0.15

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
No,(ali2ed Po−i.io)

Fig. 6. Compressive modulus measured along the specimens. The specimen with a linear 𝑉𝑉 ∗ (blue dashed curved) was printed first and the modulus was
characterized as a function of space (blue solid curve with measured values). The log-linear fit was applied to this data to arrive at the values needed to invert the
behavior. A logarithmic change in 𝑉𝑉 ∗ was applied (red dashed curve) and the corresponding modulus was fit to a linear curve (red solid curve with measured
values). This shows that the exponential relationship between 𝑉𝑉 ∗ and modulus can be accounted for.

which enables the creation of foams with spatially varied mechanical properties. It allows for a seamless transition from
standard printing to stochastic foam structures, integrating foam and non-foam areas into a single print. We demonstrated
our spatial control of stiffness by creating qualitative examples, but also quantitatively demonstrating the arbitrary control of
stiffness as a function of space. By enabling the creation of multiple stiffness foams using VTP and

Linear V*

V
*

C
om

pr
es

si
ve

 M
od

ul
us

1840

1841

1

1

(c) (d)

(e)

Fig. 7. Examples of multi-modulus printing. (a) A cube with low-modulus living hinges in the unfolded state and (b) in the folded state. (c) A foot orthotic
with low-moduli in high stress areas (e.g., ball and heel of foot), 𝑉𝑉 ∗ range 0.15-0.4. (d) Top down shots of linear (d) and logarithmic (e) transitions between areas
of different moduli on the specimen, 𝑉𝑉 ∗ range 0.15-0.4.

facilitating direct spatial control of stiffness, we have opened up new possibilities for the design and manufacture of
advanced materials and components.

A WEIGHTING FUNCTIONS

The weighting functions presented in this work are listed here as 𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠) where 𝑥𝑥 is the distance from the transition
intersection normalized by the transition length 𝐷𝐷𝑇𝑇 and 𝑠𝑠 is a transition function specific parameter set by the user. The
meaning of parameter 𝑠𝑠 is unique to the specific weighting function and is called out in each section, or if a function does
not use 𝑠𝑠 it is omitted. All weighting functions guarantee 𝐶𝐶0 continuity with the 𝜋𝜋 𝑗𝑗 associated with the ends of the transition
and other constraining equations are listed if used. The one exception is the empirically derived logarithmic function which
was fit to data and not analytically derived.

Linear.
𝑤𝑤 (𝑥𝑥) = 𝑥𝑥 + 2 (2)

Cubic.
𝑤𝑤 (𝑥𝑥 ; 𝑠𝑠) = 4 · (1 − 𝑠𝑠)𝑥𝑥 3 + 𝑠𝑠𝑠𝑠 + 2 (3)

(a) (b)

.

+

where the control parameter 𝑠𝑠 sets the slope of the function at 𝑥𝑥 = 0

𝑤𝑤 ′ (𝑥𝑥 ; 𝑠𝑠) = 𝑠𝑠

A special case of the cubic function is 𝑠𝑠 = 1.5 which also guarantees 𝐶𝐶1 continuity at the ends of the transition region.

Experimentally Fit Logarithmic. The logarithmic function was derived by inverting the log-linear fit of the measured

modulus data 𝐸𝐸 (𝑥𝑥). Because of error in the measurement, the 𝑉𝑉 ∗ do not align perfectly at the boundary conditions
𝑥𝑥 ∈

− 1 , 1

.)

2 2

where

1
𝑤𝑤 (𝑥𝑥) =

𝑏𝑏
· 𝑙𝑙𝑙𝑙 𝐸𝐸 (𝑥𝑥) 1

𝑎𝑎 2
(4)

𝐸𝐸 (𝑥𝑥) = 23.91𝑥𝑥 + 13.26
𝑎𝑎 = 4.79

𝑏𝑏 = −3.11

Cube Root.
𝑤𝑤 (𝑥𝑥) = −

√
3 𝑥𝑥

+
1
 (5)

4 2

Sinusoidal.
1 1

REFERENCES

𝑤𝑤 (𝑥𝑥) = 2 sin (𝜋𝜋𝜋𝜋) + 2 (6)

[1] Michael F Ashby. 2006. The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 364, 1838 (2006), 15–30.

[2] George Barnes and Richard Woodcock. 1958. Liquid rope-coil effect. Am. J. Phys. 26, 4 (April 1958), 205–209.
[3] Patrick Bedarf, Alessandro Dutto, Michele Zanini, and Benjamin Dillenburger. 2021. Foam 3D printing for construction: A review of applications,

materials, and processes. Automation in Construction 130 (2021), 103861.
[4] P-T Brun, Basile Audoly, Neil M Ribe, Tom S Eaves, and John R Lister. 2015. Liquid ropes: a geometrical model for thin viscous jet instabilities.

Physical review letters 114, 17 (2015), 174501.
[5] Brett Emery and Daniel Revier. 2022. Applied viscous thread instability for manufacturing 3D printed foams. In Proceedings of the 7th Annual ACM

Symposium on Computational Fabrication. 1–2.
[6] LJ Gauckler, MM Waeber, C Conti, and M Jacob-Duliere. 1985. Ceramic foam for molten metal filtration. Jom 37 (1985), 47–50.
[7] Alec Jacobson, Daniele Panozzo, et al. 2023. libigl: A simple C++ geometry processing library. https://libigl.github.io/.
[8] Shruthika Kandukuri, Atharva Kashyap, and Jeffrey Lipton. 2022. Vibration Reduction Using Material Jetted Parts for Sander Grips. In 2022

International Solid Freeform Fabrication Symposium.
[9] Jeffrey I Lipton, Meredith Cutler, Franz Nigl, Dan Cohen, and Hod Lipson. 2015. Additive manufacturing for the food industry. Trends in food science &

technology 43, 1 (2015), 114–123.
[10] Jeffrey I Lipton and Hod Lipson. 2016. 3D printing variable stiffness foams using viscous thread instability. Scientific reports 6, 1 (2016), 29996.
[11] Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural voronoi foams for additive manufacturing. ACM Transactions on Graphics

(TOG) 35, 4 (2016), 1–12.
[12] Jonàs Martínez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. 2017. Orthotropic k-nearest foams for additive manufacturing. ACM

Transactions on Graphics (TOG) 36, 4 (2017), 1–12.
[13] Stephen W Morris, Jonathan HP Dawes, Neil M Ribe, and John R Lister. 2008. Meandering instability of a viscous thread. Physical Review E 77, 6

(2008), 066218.
[14] Joseph T Muth, Patrick G Dixon, Logan Woish, Lorna J Gibson, and Jennifer A Lewis. 2017. Architected cellular ceramics with tailored stiffness via

direct foam writing. Proceedings of the National Academy of Sciences 114, 8 (2017), 1832–1837.
[15] Alessandro Ranellucci et al. 2023. Slic3r: Open source 3D printing toolbox. https://github.com/slic3r/Slic3r.
[16] Lord Rayleigh. 1892. XVI. On the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science 34, 207 (Aug. 1892), 145–154.

1842

1843

[17] N M Ribe. 2004. Coiling of viscous jets. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 460,
2051 (Nov. 2004), 3223–3239.

[18] N M Ribe, M Habibi, and Daniel Bonn. 2006. Stability of liquid rope coiling. Phys. Fluids 18, 8 (Aug. 2006), 084102.
[19] Benito Roman-Manso, Joseph Muth, Lorna J Gibson, Wolfgang Ruettinger, and Jennifer A Lewis. 2021. Hierarchically porous ceramics via direct

writing of binary colloidal gel foams. ACS Applied Materials & Interfaces 13, 7 (2021), 8976–8984.
[20] Paul Stevenson. 2012. Foam engineering: fundamentals and applications. John Wiley & Sons.
[21] S Tomotika and Geoffrey Ingram Taylor. 1935. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid.

Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150, 870 (June 1935), 322–337.
[22] Claas Willem Visser, Dahlia N Amato, Jochen Mueller, and Jennifer A Lewis. 2019. Architected polymer foams via direct bubble writing. Advanced

materials 31, 46 (2019), 1904668.
[23] Hyunwoo Yuk and Xuanhe Zhao. 2018. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Advanced

Materials 30, 6 (2018), 1704028.

	1 INTRODUCTION
	2 RELATED WORK
	2.1 Explicitly Defined 3D Printed Foams
	2.2 Viscous Thread Instability and Printing

	3 VISCOUS THREAD PRINTED FOAM GENERATION
	3.2 Implementation

	4 GRADED VTP FOAMS
	4.1 VTP Foam Characterization and Control
	4.2 Applications

	5 CONCLUSION
	A WEIGHTING FUNCTIONS
	REFERENCES

